This PR adds some documentation to address comments in https://github.com/llvm/llvm-project/pull/136581 This PR adds a test for linearization across scf.for. This new test might be considered redundant by more experienced MLIRers, but might help newer users understand how to linearize scf/cf/func operations easily The documentation added in this PR also tightens our definition of linearization, to now exclude unrolling (which creates multiple ops from 1 op). We hadn't really specified what linearization meant before.
730 lines
29 KiB
C++
730 lines
29 KiB
C++
//===- VectorLinearize.cpp - vector linearization transforms --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements patterns and pass for linearizing ND vectors into 1D.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/UB/IR/UBOps.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include <cstdint>
|
|
#include <numeric>
|
|
#include <optional>
|
|
|
|
using namespace mlir;
|
|
|
|
static FailureOr<Attribute>
|
|
linearizeConstAttr(Location loc, ConversionPatternRewriter &rewriter,
|
|
VectorType resType, Attribute value) {
|
|
|
|
if (auto dstElementsAttr = dyn_cast<DenseElementsAttr>(value)) {
|
|
if (resType.isScalable() && !isa<SplatElementsAttr>(value))
|
|
return rewriter.notifyMatchFailure(
|
|
loc,
|
|
"Cannot linearize a constant scalable vector that's not a splat");
|
|
|
|
return dstElementsAttr.reshape(resType);
|
|
}
|
|
|
|
if (auto poisonAttr = dyn_cast<ub::PoisonAttr>(value))
|
|
return poisonAttr;
|
|
|
|
return rewriter.notifyMatchFailure(loc, "unsupported attr type");
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct LinearizeConstantLike final
|
|
: OpTraitConversionPattern<OpTrait::ConstantLike> {
|
|
using OpTraitConversionPattern::OpTraitConversionPattern;
|
|
|
|
LinearizeConstantLike(const TypeConverter &typeConverter,
|
|
MLIRContext *context, PatternBenefit benefit = 1)
|
|
: OpTraitConversionPattern(typeConverter, context, benefit) {}
|
|
LogicalResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
if (op->getNumResults() != 1)
|
|
return rewriter.notifyMatchFailure(loc, "expected 1 result");
|
|
|
|
const TypeConverter &typeConverter = *getTypeConverter();
|
|
auto resType =
|
|
typeConverter.convertType<VectorType>(op->getResult(0).getType());
|
|
assert(resType && "expected 1-D vector type");
|
|
|
|
StringAttr attrName = rewriter.getStringAttr("value");
|
|
Attribute value = op->getAttr(attrName);
|
|
if (!value)
|
|
return rewriter.notifyMatchFailure(loc, "no 'value' attr");
|
|
|
|
FailureOr<Attribute> newValue =
|
|
linearizeConstAttr(loc, rewriter, resType, value);
|
|
if (failed(newValue))
|
|
return failure();
|
|
|
|
FailureOr<Operation *> convertResult =
|
|
convertOpResultTypes(op, /*operands=*/{}, typeConverter, rewriter);
|
|
if (failed(convertResult))
|
|
return failure();
|
|
|
|
Operation *newOp = *convertResult;
|
|
newOp->setAttr(attrName, *newValue);
|
|
rewriter.replaceOp(op, newOp);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct LinearizeVectorizable final
|
|
: OpTraitConversionPattern<OpTrait::Vectorizable> {
|
|
using OpTraitConversionPattern::OpTraitConversionPattern;
|
|
|
|
public:
|
|
LinearizeVectorizable(const TypeConverter &typeConverter,
|
|
MLIRContext *context, PatternBenefit benefit = 1)
|
|
: OpTraitConversionPattern(typeConverter, context, benefit) {}
|
|
LogicalResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
FailureOr<Operation *> newOp =
|
|
convertOpResultTypes(op, operands, *getTypeConverter(), rewriter);
|
|
if (failed(newOp))
|
|
return failure();
|
|
|
|
rewriter.replaceOp(op, (*newOp)->getResults());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <typename TOp>
|
|
static bool stridesAllOne(TOp op) {
|
|
static_assert(
|
|
std::is_same_v<TOp, vector::ExtractStridedSliceOp> ||
|
|
std::is_same_v<TOp, vector::InsertStridedSliceOp>,
|
|
"expected vector.extract_strided_slice or vector.insert_strided_slice");
|
|
ArrayAttr strides = op.getStrides();
|
|
return llvm::all_of(
|
|
strides, [](auto stride) { return isConstantIntValue(stride, 1); });
|
|
}
|
|
|
|
/// Convert an array of attributes into a vector of integers, if possible.
|
|
static FailureOr<SmallVector<int64_t>> intsFromArrayAttr(ArrayAttr attrs) {
|
|
if (!attrs)
|
|
return failure();
|
|
SmallVector<int64_t> ints;
|
|
ints.reserve(attrs.size());
|
|
for (auto attr : attrs) {
|
|
if (auto intAttr = dyn_cast<IntegerAttr>(attr)) {
|
|
ints.push_back(intAttr.getInt());
|
|
} else {
|
|
return failure();
|
|
}
|
|
}
|
|
return ints;
|
|
}
|
|
|
|
/// Consider inserting a vector of shape `small` into a vector of shape `large`,
|
|
/// at position `offsets`: this function enumeratates all the indices in `large`
|
|
/// that are written to. The enumeration is with row-major ordering.
|
|
///
|
|
/// Example: insert a 1x2 vector into a 4x5 vector at position (1,3). The 2
|
|
/// positions written to are (1,3) and (1,4), which have linearized indices 8
|
|
/// and 9. So [8,9] is returned.
|
|
///
|
|
/// The length of the returned vector is equal to the number of elements in
|
|
/// the shape `small` (i.e. the product of dimensions of `small`).
|
|
SmallVector<int64_t> static getStridedSliceInsertionIndices(
|
|
ArrayRef<int64_t> small, ArrayRef<int64_t> large,
|
|
ArrayRef<int64_t> offsets) {
|
|
|
|
// Example of alignment between, `large`, `small` and `offsets`:
|
|
// large = 4, 5, 6, 7, 8
|
|
// small = 1, 6, 7, 8
|
|
// offsets = 2, 3, 0
|
|
//
|
|
// `offsets` has implicit trailing 0s, `small` has implicit leading 1s.
|
|
assert((large.size() >= small.size()) &&
|
|
"rank of 'large' cannot be lower than rank of 'small'");
|
|
assert((large.size() >= offsets.size()) &&
|
|
"rank of 'large' cannot be lower than the number of offsets");
|
|
unsigned delta = large.size() - small.size();
|
|
unsigned nOffsets = offsets.size();
|
|
auto getSmall = [&](int64_t i) -> int64_t {
|
|
return i >= delta ? small[i - delta] : 1;
|
|
};
|
|
auto getOffset = [&](int64_t i) -> int64_t {
|
|
return i < nOffsets ? offsets[i] : 0;
|
|
};
|
|
|
|
// Using 2 vectors of indices, at each iteration populate the updated set of
|
|
// indices based on the old set of indices, and the size of the small vector
|
|
// in the current iteration.
|
|
SmallVector<int64_t> indices{0};
|
|
int64_t stride = 1;
|
|
for (int i = large.size() - 1; i >= 0; --i) {
|
|
int64_t currentSize = indices.size();
|
|
int64_t smallSize = getSmall(i);
|
|
int64_t nextSize = currentSize * smallSize;
|
|
SmallVector<int64_t> nextIndices(nextSize);
|
|
int64_t *base = nextIndices.begin();
|
|
int64_t offset = getOffset(i) * stride;
|
|
for (int j = 0; j < smallSize; ++j) {
|
|
for (int k = 0; k < currentSize; ++k) {
|
|
base[k] = indices[k] + offset;
|
|
}
|
|
offset += stride;
|
|
base += currentSize;
|
|
}
|
|
stride *= large[i];
|
|
indices = std::move(nextIndices);
|
|
}
|
|
return indices;
|
|
}
|
|
|
|
/// This pattern converts a vector.extract_strided_slice operation into a
|
|
/// vector.shuffle operation that has a rank-1 (linearized) operand and result.
|
|
///
|
|
/// For example, the following:
|
|
///
|
|
/// ```
|
|
/// vector.extract_strided_slice %source
|
|
/// { offsets = [..], strides = [..], sizes = [..] }
|
|
/// ```
|
|
///
|
|
/// is converted to :
|
|
/// ```
|
|
/// %source_1d = vector.shape_cast %source
|
|
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ]
|
|
/// %out_nd = vector.shape_cast %out_1d
|
|
/// ```
|
|
///
|
|
/// `shuffle_indices_1d` is computed using the offsets and sizes of the original
|
|
/// vector.extract_strided_slice operation.
|
|
struct LinearizeVectorExtractStridedSlice final
|
|
: public mlir::OpConversionPattern<mlir::vector::ExtractStridedSliceOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LinearizeVectorExtractStridedSlice(const TypeConverter &typeConverter,
|
|
MLIRContext *context,
|
|
PatternBenefit benefit = 1)
|
|
: OpConversionPattern(typeConverter, context, benefit) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(vector::ExtractStridedSliceOp extractStridedSliceOp,
|
|
OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
VectorType flatOutputType = getTypeConverter()->convertType<VectorType>(
|
|
extractStridedSliceOp.getType());
|
|
assert(flatOutputType && "vector type expected");
|
|
|
|
// Expect a legalization failure if the strides are not all 1 (if ever the
|
|
// verifier for extract_strided_slice allows non-1 strides).
|
|
if (!stridesAllOne(extractStridedSliceOp)) {
|
|
return rewriter.notifyMatchFailure(
|
|
extractStridedSliceOp,
|
|
"extract_strided_slice with strides != 1 not supported");
|
|
}
|
|
|
|
FailureOr<SmallVector<int64_t>> offsets =
|
|
intsFromArrayAttr(extractStridedSliceOp.getOffsets());
|
|
if (failed(offsets)) {
|
|
return rewriter.notifyMatchFailure(extractStridedSliceOp,
|
|
"failed to get integer offsets");
|
|
}
|
|
|
|
ArrayRef<int64_t> inputShape =
|
|
extractStridedSliceOp.getSourceVectorType().getShape();
|
|
|
|
ArrayRef<int64_t> outputShape = extractStridedSliceOp.getType().getShape();
|
|
|
|
SmallVector<int64_t> indices = getStridedSliceInsertionIndices(
|
|
outputShape, inputShape, offsets.value());
|
|
|
|
Value srcVector = adaptor.getVector();
|
|
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
|
|
extractStridedSliceOp, flatOutputType, srcVector, srcVector, indices);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// This pattern converts a vector.insert_strided_slice operation into a
|
|
/// vector.shuffle operation that has rank-1 (linearized) operands and result.
|
|
///
|
|
/// For example, the following:
|
|
/// ```
|
|
/// %0 = vector.insert_strided_slice %to_store, %into
|
|
/// {offsets = [1, 0, 0, 0], strides = [1, 1]}
|
|
/// : vector<2x2xi8> into vector<2x1x3x2xi8>
|
|
/// ```
|
|
///
|
|
/// is converted to
|
|
/// ```
|
|
/// %to_store_1d
|
|
/// = vector.shape_cast %to_store : vector<2x2xi8> to vector<4xi8>
|
|
/// %into_1d = vector.shape_cast %into : vector<2x1x3x2xi8> to vector<12xi8>
|
|
/// %out_1d = vector.shuffle %into_1d, %to_store_1d [ shuffle_indices_1d ]
|
|
/// %out_nd = vector.shape_cast %out_1d : vector<12xi8> to vector<2x1x3x2xi8>
|
|
/// ```
|
|
///
|
|
/// where shuffle_indices_1d in this case is
|
|
/// [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 10, 11].
|
|
/// ^^^^^^^^^^^^^^
|
|
/// to_store_1d
|
|
///
|
|
struct LinearizeVectorInsertStridedSlice final
|
|
: public mlir::OpConversionPattern<mlir::vector::InsertStridedSliceOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LinearizeVectorInsertStridedSlice(const TypeConverter &typeConverter,
|
|
MLIRContext *context,
|
|
PatternBenefit benefit = 1)
|
|
: OpConversionPattern(typeConverter, context, benefit) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(vector::InsertStridedSliceOp insertStridedSliceOp,
|
|
OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
// Expect a legalization failure if the strides are not all 1 (if ever the
|
|
// verifier for insert_strided_slice allows non-1 strides).
|
|
if (!stridesAllOne(insertStridedSliceOp)) {
|
|
return rewriter.notifyMatchFailure(
|
|
insertStridedSliceOp,
|
|
"insert_strided_slice with strides != 1 not supported");
|
|
}
|
|
|
|
VectorType inputType = insertStridedSliceOp.getValueToStore().getType();
|
|
ArrayRef<int64_t> inputShape = inputType.getShape();
|
|
|
|
VectorType outputType = insertStridedSliceOp.getType();
|
|
ArrayRef<int64_t> outputShape = outputType.getShape();
|
|
int64_t nOutputElements = outputType.getNumElements();
|
|
|
|
FailureOr<SmallVector<int64_t>> offsets =
|
|
intsFromArrayAttr(insertStridedSliceOp.getOffsets());
|
|
if (failed(offsets)) {
|
|
return rewriter.notifyMatchFailure(insertStridedSliceOp,
|
|
"failed to get integer offsets");
|
|
}
|
|
SmallVector<int64_t> sliceIndices = getStridedSliceInsertionIndices(
|
|
inputShape, outputShape, offsets.value());
|
|
|
|
SmallVector<int64_t> indices(nOutputElements);
|
|
std::iota(indices.begin(), indices.end(), 0);
|
|
for (auto [index, sliceIndex] : llvm::enumerate(sliceIndices)) {
|
|
indices[sliceIndex] = index + nOutputElements;
|
|
}
|
|
|
|
Value flatToStore = adaptor.getValueToStore();
|
|
Value flatDest = adaptor.getDest();
|
|
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(insertStridedSliceOp,
|
|
flatDest.getType(), flatDest,
|
|
flatToStore, indices);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// This pattern converts the ShuffleOp that works on nD (n > 1)
|
|
/// vectors to a ShuffleOp that works on linearized vectors.
|
|
/// Following,
|
|
/// vector.shuffle %v1, %v2 [ shuffle_indices ]
|
|
/// is converted to :
|
|
/// %v1_1d = vector.shape_cast %v1
|
|
/// %v2_1d = vector.shape_cast %v2
|
|
/// %out_1d = vector.shuffle %v1_1d, %v2_1d [ shuffle_indices_1d ]
|
|
/// %out_nd = vector.shape_cast %out_1d
|
|
// `shuffle_indices_1d` is computed using the sizes and `shuffle_indices`
|
|
/// of the original shuffle operation.
|
|
struct LinearizeVectorShuffle final
|
|
: public OpConversionPattern<vector::ShuffleOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LinearizeVectorShuffle(const TypeConverter &typeConverter,
|
|
MLIRContext *context, PatternBenefit benefit = 1)
|
|
: OpConversionPattern(typeConverter, context, benefit) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
VectorType dstType =
|
|
getTypeConverter()->convertType<VectorType>(shuffleOp.getType());
|
|
assert(dstType && "vector type destination expected.");
|
|
|
|
Value vec1 = adaptor.getV1();
|
|
Value vec2 = adaptor.getV2();
|
|
int shuffleSliceLen = 1;
|
|
int rank = shuffleOp.getV1().getType().getRank();
|
|
|
|
// If rank > 1, we need to do the shuffle in the granularity of slices
|
|
// instead of scalars. Size of the slice is equal to the rank-1 innermost
|
|
// dims. Mask of the shuffle op specifies which slice to take from the
|
|
// outermost dim.
|
|
if (rank > 1) {
|
|
llvm::ArrayRef<int64_t> shape = shuffleOp.getV1().getType().getShape();
|
|
for (unsigned i = 1; i < shape.size(); ++i) {
|
|
shuffleSliceLen *= shape[i];
|
|
}
|
|
}
|
|
|
|
// For each value in the mask, we generate the indices of the source vectors
|
|
// that need to be shuffled to the destination vector. If shuffleSliceLen >
|
|
// 1 we need to shuffle the slices (consecutive shuffleSliceLen number of
|
|
// elements) instead of scalars.
|
|
ArrayRef<int64_t> mask = shuffleOp.getMask();
|
|
int64_t totalSizeOfShuffledElmnts = mask.size() * shuffleSliceLen;
|
|
llvm::SmallVector<int64_t, 2> indices(totalSizeOfShuffledElmnts);
|
|
for (auto [i, value] : llvm::enumerate(mask)) {
|
|
std::iota(indices.begin() + shuffleSliceLen * i,
|
|
indices.begin() + shuffleSliceLen * (i + 1),
|
|
shuffleSliceLen * value);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(shuffleOp, dstType, vec1,
|
|
vec2, indices);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// This pattern converts the ExtractOp to a ShuffleOp that works on a
|
|
/// linearized vector.
|
|
/// Following,
|
|
/// vector.extract %source [ position ]
|
|
/// is converted to :
|
|
/// %source_1d = vector.shape_cast %source
|
|
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ]
|
|
/// %out_nd = vector.shape_cast %out_1d
|
|
/// `shuffle_indices_1d` is computed using the position of the original extract.
|
|
struct LinearizeVectorExtract final
|
|
: public OpConversionPattern<vector::ExtractOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LinearizeVectorExtract(const TypeConverter &typeConverter,
|
|
MLIRContext *context, PatternBenefit benefit = 1)
|
|
: OpConversionPattern(typeConverter, context, benefit) {}
|
|
LogicalResult
|
|
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Skip if result is not a vector type
|
|
if (!isa<VectorType>(extractOp.getType()))
|
|
return rewriter.notifyMatchFailure(extractOp,
|
|
"scalar extract not supported");
|
|
Type dstTy = getTypeConverter()->convertType(extractOp.getType());
|
|
assert(dstTy && "expected 1-D vector type");
|
|
|
|
// Dynamic position is not supported.
|
|
if (extractOp.hasDynamicPosition())
|
|
return rewriter.notifyMatchFailure(extractOp,
|
|
"dynamic position is not supported.");
|
|
|
|
llvm::ArrayRef<int64_t> shape = extractOp.getVector().getType().getShape();
|
|
int64_t size = extractOp.getVector().getType().getNumElements();
|
|
|
|
// Compute linearized offset.
|
|
int64_t linearizedOffset = 0;
|
|
llvm::ArrayRef<int64_t> offsets = extractOp.getStaticPosition();
|
|
for (auto [i, off] : llvm::enumerate(offsets)) {
|
|
size /= shape[i];
|
|
linearizedOffset += offsets[i] * size;
|
|
}
|
|
|
|
llvm::SmallVector<int64_t, 2> indices(size);
|
|
std::iota(indices.begin(), indices.end(), linearizedOffset);
|
|
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
|
|
extractOp, dstTy, adaptor.getVector(), adaptor.getVector(), indices);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// This pattern converts the InsertOp to a ShuffleOp that works on a
|
|
/// linearized vector.
|
|
/// Following,
|
|
/// vector.insert %source %destination [ position ]
|
|
/// is converted to :
|
|
/// %source_1d = vector.shape_cast %source
|
|
/// %destination_1d = vector.shape_cast %destination
|
|
/// %out_1d = vector.shuffle %destination_1d, %source_1d [ shuffle_indices_1d
|
|
/// ] %out_nd = vector.shape_cast %out_1d
|
|
/// `shuffle_indices_1d` is computed using the position of the original insert.
|
|
struct LinearizeVectorInsert final
|
|
: public OpConversionPattern<vector::InsertOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LinearizeVectorInsert(const TypeConverter &typeConverter,
|
|
MLIRContext *context, PatternBenefit benefit = 1)
|
|
: OpConversionPattern(typeConverter, context, benefit) {}
|
|
LogicalResult
|
|
matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
VectorType dstTy = getTypeConverter()->convertType<VectorType>(
|
|
insertOp.getDestVectorType());
|
|
assert(dstTy && "vector type destination expected.");
|
|
|
|
// dynamic position is not supported
|
|
if (insertOp.hasDynamicPosition())
|
|
return rewriter.notifyMatchFailure(insertOp,
|
|
"dynamic position is not supported.");
|
|
auto srcTy = insertOp.getValueToStoreType();
|
|
auto srcAsVec = dyn_cast<VectorType>(srcTy);
|
|
uint64_t srcSize = 0;
|
|
if (srcAsVec) {
|
|
srcSize = srcAsVec.getNumElements();
|
|
} else {
|
|
return rewriter.notifyMatchFailure(insertOp,
|
|
"scalars are not supported.");
|
|
}
|
|
|
|
auto dstShape = insertOp.getDestVectorType().getShape();
|
|
const auto dstSize = insertOp.getDestVectorType().getNumElements();
|
|
auto dstSizeForOffsets = dstSize;
|
|
|
|
// compute linearized offset
|
|
int64_t linearizedOffset = 0;
|
|
auto offsetsNd = insertOp.getStaticPosition();
|
|
for (auto [dim, offset] : llvm::enumerate(offsetsNd)) {
|
|
dstSizeForOffsets /= dstShape[dim];
|
|
linearizedOffset += offset * dstSizeForOffsets;
|
|
}
|
|
|
|
llvm::SmallVector<int64_t, 2> indices(dstSize);
|
|
auto *origValsUntil = indices.begin();
|
|
std::advance(origValsUntil, linearizedOffset);
|
|
std::iota(indices.begin(), origValsUntil,
|
|
0); // original values that remain [0, offset)
|
|
auto *newValsUntil = origValsUntil;
|
|
std::advance(newValsUntil, srcSize);
|
|
std::iota(origValsUntil, newValsUntil,
|
|
dstSize); // new values [offset, offset+srcNumElements)
|
|
std::iota(newValsUntil, indices.end(),
|
|
linearizedOffset + srcSize); // the rest of original values
|
|
// [offset+srcNumElements, end)
|
|
|
|
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
|
|
insertOp, dstTy, adaptor.getDest(), adaptor.getValueToStore(), indices);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// This pattern converts the BitCastOp that works on nD (n > 1)
|
|
/// vectors to a BitCastOp that works on linearized vectors.
|
|
/// Following,
|
|
/// vector.bitcast %v1: vector<4x2xf32> to vector<4x4xf16>
|
|
/// is converted to :
|
|
/// %v1_1d = vector.shape_cast %v1: vector<4x2xf32> to vector<8xf32>
|
|
/// %out_1d = vector.bitcast %v1_1d: vector<8xf32> to vector<16xf16>
|
|
/// %out_nd = vector.shape_cast %out_1d: vector<16xf16> to vector<4x4xf16>
|
|
struct LinearizeVectorBitCast final
|
|
: public OpConversionPattern<vector::BitCastOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LinearizeVectorBitCast(const TypeConverter &typeConverter,
|
|
MLIRContext *context, PatternBenefit benefit = 1)
|
|
: OpConversionPattern(typeConverter, context, benefit) {}
|
|
LogicalResult
|
|
matchAndRewrite(vector::BitCastOp castOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto resType = getTypeConverter()->convertType(castOp.getType());
|
|
assert(resType && "expected 1-D vector type");
|
|
rewriter.replaceOpWithNewOp<vector::BitCastOp>(castOp, resType,
|
|
adaptor.getSource());
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
/// This pattern converts the SplatOp to work on a linearized vector.
|
|
/// Following,
|
|
/// vector.splat %value : vector<4x4xf32>
|
|
/// is converted to:
|
|
/// %out_1d = vector.splat %value : vector<16xf32>
|
|
/// %out_nd = vector.shape_cast %out_1d : vector<16xf32> to vector<4x4xf32>
|
|
struct LinearizeVectorSplat final
|
|
: public OpConversionPattern<vector::SplatOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LinearizeVectorSplat(const TypeConverter &typeConverter, MLIRContext *context,
|
|
PatternBenefit benefit = 1)
|
|
: OpConversionPattern(typeConverter, context, benefit) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(vector::SplatOp splatOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto dstTy = getTypeConverter()->convertType(splatOp.getType());
|
|
if (!dstTy)
|
|
return rewriter.notifyMatchFailure(splatOp, "cannot convert type.");
|
|
rewriter.replaceOpWithNewOp<vector::SplatOp>(splatOp, adaptor.getInput(),
|
|
dstTy);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// This pattern converts the CreateMaskOp to work on a linearized vector.
|
|
/// It currently supports only 2D masks with a unit outer dimension.
|
|
/// Following,
|
|
/// vector.create_mask %arg0, %arg1 : vector<1x4xi1>
|
|
/// is converted to:
|
|
/// %zero = arith.constant 0 : index
|
|
/// %cmpi = arith.cmpi sgt, %arg0, %zero : index
|
|
/// %index = arith.index_cast %cmpi : i1 to index
|
|
/// %mul = arith.andi %index, %arg1 : index
|
|
/// %mask = vector.create_mask %mul : vector<4xi1>
|
|
/// %shape_cast = vector.shape_cast %mask : vector<4xi1> to vector<1x4xi1>
|
|
struct LinearizeVectorCreateMask final
|
|
: OpConversionPattern<vector::CreateMaskOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LinearizeVectorCreateMask(const TypeConverter &typeConverter,
|
|
MLIRContext *context, PatternBenefit benefit = 1)
|
|
: OpConversionPattern(typeConverter, context, benefit) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(vector::CreateMaskOp createMaskOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = createMaskOp.getLoc();
|
|
VectorType srcTy = createMaskOp.getType();
|
|
auto srcShape = srcTy.getShape();
|
|
if (srcShape.size() != 2)
|
|
return rewriter.notifyMatchFailure(createMaskOp,
|
|
"only 2D mask is supported.");
|
|
|
|
if (srcShape[0] != 1)
|
|
return rewriter.notifyMatchFailure(
|
|
createMaskOp, "only unit outer dimension is supported.");
|
|
|
|
auto dstTy = getTypeConverter()->convertType(srcTy);
|
|
if (!dstTy)
|
|
return rewriter.notifyMatchFailure(createMaskOp, "cannot convert type.");
|
|
|
|
// Compare the first operand with 0. If it is greater than 0, the
|
|
// corresponding mask element is set to true, otherwise false.
|
|
// The result of the comparison is then multiplied with
|
|
// the second operand of create_mask to get the 1D mask.
|
|
auto firstOperand = adaptor.getOperands().front();
|
|
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
|
|
auto isNonZero = rewriter.createOrFold<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::sgt, firstOperand, zero);
|
|
auto isNonZeroIndex = rewriter.createOrFold<mlir::arith::IndexCastOp>(
|
|
loc, rewriter.getIndexType(), isNonZero);
|
|
auto secondOperand = adaptor.getOperands().back();
|
|
auto maskSize = rewriter.createOrFold<mlir::arith::AndIOp>(
|
|
loc, rewriter.getIndexType(), isNonZeroIndex, secondOperand);
|
|
|
|
auto newMask =
|
|
rewriter.create<mlir::vector::CreateMaskOp>(loc, dstTy, maskSize);
|
|
rewriter.replaceOp(createMaskOp, newMask);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// This method defines the set of operations that are linearizable, and hence
|
|
/// that are considered illegal for the conversion target.
|
|
static bool isLinearizable(Operation *op) {
|
|
|
|
// Only ops that are in the vector dialect, are ConstantLike, or
|
|
// are Vectorizable might be linearized currently.
|
|
StringLiteral vectorDialect = vector::VectorDialect::getDialectNamespace();
|
|
StringRef opDialect = op->getDialect()->getNamespace();
|
|
bool supported = (opDialect == vectorDialect) ||
|
|
op->hasTrait<OpTrait::ConstantLike>() ||
|
|
op->hasTrait<OpTrait::Vectorizable>();
|
|
if (!supported)
|
|
return false;
|
|
|
|
return TypeSwitch<Operation *, bool>(op)
|
|
// As type legalization is done with vector.shape_cast, shape_cast
|
|
// itself cannot be linearized (will create new shape_casts to linearize
|
|
// ad infinitum).
|
|
.Case<vector::ShapeCastOp>([&](auto) { return false; })
|
|
// The operations
|
|
// - vector.extract_strided_slice
|
|
// - vector.extract
|
|
// - vector.insert_strided_slice
|
|
// - vector.insert
|
|
// are linearized to a rank-1 vector.shuffle by the current patterns.
|
|
// vector.shuffle only supports fixed size vectors, so it is impossible to
|
|
// use this approach to linearize these ops if they operate on scalable
|
|
// vectors.
|
|
.Case<vector::ExtractStridedSliceOp>(
|
|
[&](vector::ExtractStridedSliceOp extractOp) {
|
|
return !extractOp.getType().isScalable();
|
|
})
|
|
.Case<vector::InsertStridedSliceOp>(
|
|
[&](vector::InsertStridedSliceOp insertOp) {
|
|
return !insertOp.getType().isScalable();
|
|
})
|
|
.Case<vector::InsertOp>([&](vector::InsertOp insertOp) {
|
|
return !insertOp.getType().isScalable();
|
|
})
|
|
.Case<vector::ExtractOp>([&](vector::ExtractOp extractOp) {
|
|
return !extractOp.getSourceVectorType().isScalable();
|
|
})
|
|
.Default([&](auto) { return true; });
|
|
}
|
|
|
|
void mlir::vector::populateForVectorLinearize(TypeConverter &typeConverter,
|
|
ConversionTarget &target) {
|
|
|
|
auto convertType = [](Type type) -> std::optional<Type> {
|
|
VectorType vectorType = dyn_cast<VectorType>(type);
|
|
if (!vectorType || !isLinearizableVector(vectorType))
|
|
return type;
|
|
|
|
VectorType linearizedType =
|
|
VectorType::get(vectorType.getNumElements(),
|
|
vectorType.getElementType(), vectorType.isScalable());
|
|
return linearizedType;
|
|
};
|
|
typeConverter.addConversion(convertType);
|
|
|
|
auto materializeCast = [](OpBuilder &builder, Type type, ValueRange inputs,
|
|
Location loc) -> Value {
|
|
if (inputs.size() != 1)
|
|
return nullptr;
|
|
|
|
Value value = inputs.front();
|
|
if (!isa<VectorType>(type) || !isa<VectorType>(value.getType()))
|
|
return nullptr;
|
|
|
|
return builder.create<vector::ShapeCastOp>(loc, type, value);
|
|
};
|
|
typeConverter.addSourceMaterialization(materializeCast);
|
|
typeConverter.addTargetMaterialization(materializeCast);
|
|
|
|
target.markUnknownOpDynamicallyLegal(
|
|
[=](Operation *op) -> std::optional<bool> {
|
|
if (!isLinearizable(op))
|
|
return true;
|
|
// This will return true if, for all operand and result types `t`,
|
|
// convertType(t) = t. This is true if there are no rank>=2 vectors.
|
|
return typeConverter.isLegal(op);
|
|
});
|
|
}
|
|
|
|
void mlir::vector::populateVectorLinearizeBasePatterns(
|
|
const TypeConverter &typeConverter, const ConversionTarget &target,
|
|
RewritePatternSet &patterns) {
|
|
patterns
|
|
.add<LinearizeConstantLike, LinearizeVectorizable, LinearizeVectorBitCast,
|
|
LinearizeVectorSplat, LinearizeVectorCreateMask>(
|
|
typeConverter, patterns.getContext());
|
|
}
|
|
|
|
void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns(
|
|
const TypeConverter &typeConverter, const ConversionTarget &target,
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<LinearizeVectorShuffle, LinearizeVectorExtract,
|
|
LinearizeVectorInsert, LinearizeVectorExtractStridedSlice,
|
|
LinearizeVectorInsertStridedSlice>(typeConverter,
|
|
patterns.getContext());
|
|
}
|