[mlir][vector] Address linearization comments (post commit) (#138075)

This PR adds some documentation to address comments in
https://github.com/llvm/llvm-project/pull/136581 

This PR adds a test for linearization across scf.for. This new test
might be considered redundant by more experienced MLIRers, but might
help newer users understand how to linearize scf/cf/func operations
easily

The documentation added in this PR also tightens our definition of
linearization, to now exclude unrolling (which creates multiple ops from
1 op). We hadn't really specified what linearization meant before.
This commit is contained in:
James Newling
2025-05-15 07:52:53 -07:00
committed by GitHub
parent b7d6a54703
commit 3d6d5dfed2
5 changed files with 78 additions and 44 deletions

View File

@@ -407,13 +407,22 @@ void populateVectorTransposeNarrowTypeRewritePatterns(
RewritePatternSet &patterns, PatternBenefit benefit = 1);
/// Initialize `typeConverter` and `conversionTarget` for vector linearization.
/// This registers (1) which operations are legal and hence should not be
/// linearized, (2) what converted types are (rank-1 vectors) and how to
///
/// Definition: here 'linearization' means converting a single operation with
/// 1+ vector operand/result of rank>1, into a new single operation whose
/// vector operands and results are all of rank<=1.
///
/// This function registers (1) which operations are legal, and hence should not
/// be linearized, (2) what the converted types are (rank-1 vectors) and how to
/// materialze the conversion (with shape_cast)
///
/// Note: the set of legal operations can be extended by a user if for example
/// certain rank>1 vectors are considered valid, but adding additional
/// certain rank>1 vectors are considered valid, by adding additional
/// dynamically legal ops to `conversionTarget`.
///
/// Further note: the choice to use a dialect conversion design for
/// linearization is to make it easy to reuse generic structural type
/// conversions for linearizing scf/cf/func operations
void populateForVectorLinearize(TypeConverter &typeConverter,
ConversionTarget &conversionTarget);

View File

@@ -99,7 +99,7 @@ public:
// PR47938 tracks this issue, but it seems hard to fix. Instead, we need
// to clone the op.
//
// 2. We need to resue the original region instead of cloning it, otherwise
// 2. We need to reuse the original region instead of cloning it, otherwise
// the dialect conversion framework thinks that we just inserted all the
// cloned child ops. But what we want is to "take" the child regions and let
// the dialect conversion framework continue recursively into ops inside

View File

@@ -626,45 +626,49 @@ struct LinearizeVectorCreateMask final
} // namespace
/// Return true if the operation `op` does not support scalable vectors and
/// has at least 1 scalable vector result. These ops should all eventually
/// support scalable vectors, and this function should be removed.
static bool isNotLinearizableBecauseScalable(Operation *op) {
bool unsupported =
isa<vector::ExtractStridedSliceOp, vector::InsertStridedSliceOp,
vector::ExtractOp, vector::InsertOp>(op);
if (!unsupported)
return false;
// Check if any of the results is a scalable vector type.
auto types = op->getResultTypes();
bool containsScalableResult =
std::any_of(types.begin(), types.end(), [](Type type) {
auto vecType = dyn_cast<VectorType>(type);
return vecType && vecType.isScalable();
});
return containsScalableResult;
}
static bool isNotLinearizable(Operation *op) {
/// This method defines the set of operations that are linearizable, and hence
/// that are considered illegal for the conversion target.
static bool isLinearizable(Operation *op) {
// Only ops that are in the vector dialect, are ConstantLike, or
// are Vectorizable might be linearized currently.
StringLiteral vectorDialect = vector::VectorDialect::getDialectNamespace();
StringRef opDialect = op->getDialect()->getNamespace();
bool unsupported = (opDialect != vectorDialect) &&
!op->hasTrait<OpTrait::ConstantLike>() &&
!op->hasTrait<OpTrait::Vectorizable>();
if (unsupported)
return true;
bool supported = (opDialect == vectorDialect) ||
op->hasTrait<OpTrait::ConstantLike>() ||
op->hasTrait<OpTrait::Vectorizable>();
if (!supported)
return false;
// Some ops currently don't support scalable vectors.
if (isNotLinearizableBecauseScalable(op))
return true;
return false;
return TypeSwitch<Operation *, bool>(op)
// As type legalization is done with vector.shape_cast, shape_cast
// itself cannot be linearized (will create new shape_casts to linearize
// ad infinitum).
.Case<vector::ShapeCastOp>([&](auto) { return false; })
// The operations
// - vector.extract_strided_slice
// - vector.extract
// - vector.insert_strided_slice
// - vector.insert
// are linearized to a rank-1 vector.shuffle by the current patterns.
// vector.shuffle only supports fixed size vectors, so it is impossible to
// use this approach to linearize these ops if they operate on scalable
// vectors.
.Case<vector::ExtractStridedSliceOp>(
[&](vector::ExtractStridedSliceOp extractOp) {
return !extractOp.getType().isScalable();
})
.Case<vector::InsertStridedSliceOp>(
[&](vector::InsertStridedSliceOp insertOp) {
return !insertOp.getType().isScalable();
})
.Case<vector::InsertOp>([&](vector::InsertOp insertOp) {
return !insertOp.getType().isScalable();
})
.Case<vector::ExtractOp>([&](vector::ExtractOp extractOp) {
return !extractOp.getSourceVectorType().isScalable();
})
.Default([&](auto) { return true; });
}
void mlir::vector::populateForVectorLinearize(TypeConverter &typeConverter,
@@ -698,7 +702,7 @@ void mlir::vector::populateForVectorLinearize(TypeConverter &typeConverter,
target.markUnknownOpDynamicallyLegal(
[=](Operation *op) -> std::optional<bool> {
if (isNotLinearizable(op))
if (!isLinearizable(op))
return true;
// This will return true if, for all operand and result types `t`,
// convertType(t) = t. This is true if there are no rank>=2 vectors.

View File

@@ -392,6 +392,28 @@ func.func @test_vector_bitcast(%arg0: vector<[4]x2xf32>) -> vector<[4]x4xf16> {
// -----
// CHECK-LABEL: test_linearize_across_for
func.func @test_linearize_across_for(%arg0 : vector<4xi8>) -> vector<4xi8> {
%0 = vector.shape_cast %arg0 : vector<4xi8> to vector<2x2xi8>
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c4 = arith.constant 4 : index
// CHECK: scf.for {{.*}} -> (vector<4xi8>)
%1 = scf.for %i = %c0 to %c4 step %c1 iter_args(%arg1 = %0) -> (vector<2x2xi8>) {
// CHECK: arith.addi {{.*}} : vector<4xi8>
%2 = arith.addi %arg1, %0 : vector<2x2xi8>
// CHECK: scf.yield {{.*}} : vector<4xi8>
scf.yield %2 : vector<2x2xi8>
}
%3 = vector.shape_cast %1 : vector<2x2xi8> to vector<4xi8>
return %3 : vector<4xi8>
}
// -----
// CHECK-LABEL: linearize_vector_splat
// CHECK-SAME: (%[[ARG:.*]]: i32) -> vector<4x2xi32>
func.func @linearize_vector_splat(%arg0: i32) -> vector<4x2xi32> {
@@ -414,6 +436,7 @@ func.func @linearize_scalable_vector_splat(%arg0: i32) -> vector<4x[2]xi32> {
// CHECK: return %[[CAST]] : vector<4x[2]xi32>
%0 = vector.splat %arg0 : vector<4x[2]xi32>
return %0 : vector<4x[2]xi32>
}
// -----

View File

@@ -17,6 +17,7 @@
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
@@ -836,9 +837,6 @@ struct TestVectorEmulateMaskedLoadStore final
}
};
// TODO: move this code into the user project.
namespace vendor {
/// Get the set of operand/result types to check for sufficiently
/// small inner-most dimension size.
static SmallVector<std::pair<Type, unsigned>>
@@ -960,8 +958,6 @@ struct TestVectorBitWidthLinearize final
}
};
} // namespace vendor
struct TestVectorLinearize final
: public PassWrapper<TestVectorLinearize, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestVectorLinearize)
@@ -987,6 +983,8 @@ struct TestVectorLinearize final
vector::populateVectorLinearizeBasePatterns(converter, target, patterns);
vector::populateVectorLinearizeShuffleLikeOpsPatterns(converter, target,
patterns);
mlir::scf::populateSCFStructuralTypeConversionsAndLegality(
converter, patterns, target);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
@@ -1067,7 +1065,7 @@ void registerTestVectorLowerings() {
PassRegistration<TestVectorLinearize>();
PassRegistration<vendor::TestVectorBitWidthLinearize>();
PassRegistration<TestVectorBitWidthLinearize>();
PassRegistration<TestEliminateVectorMasks>();
}