Files
clang-p2996/llvm/lib/Transforms/IPO/SampleProfileMatcher.cpp
Lei Wang 5b6f151104 [SampleFDO] Improve stale profile matching by diff algorithm (#87375)
This change improves the matching algorithm by using the diff algorithm,
the current matching algorithm only processes the callsites grouped by
the same name functions, it doesn't consider the order relationships
between different name functions, this sometimes fails to handle this
ambiguous anchor case. For example. (`Foo:1` means a
calliste[callee_name: callsite_location])
```
IR :      foo:1  bar:2  foo:4  bar:5 
Profile :        bar:3  foo:5  bar:6
```
The `foo:1` is matched to the 2nd `foo:5` and using the diff
algorithm(finding longest common subsequence ) can help on this issue.
One well-known diff algorithm is the Myers diff algorithm(paper "An
O(ND) Difference Algorithm and Its Variations∗" Eugene W. Myers), its
variations have been implemented and used in many famous tools, like the
GNU diff or git diff. It provides an efficient way to find the longest
common subsequence or the shortest edit script through graph searching.
There are several variations/refinements for the algorithm, but as in
our case, the num of function callsites is usually very small, so we
implemented the basic greedy version in this change which should be good
enough.
We observed better matchings and positive perf improvement on our
internal services.
2024-05-13 16:01:29 -07:00

629 lines
24 KiB
C++

//===- SampleProfileMatcher.cpp - Sampling-based Stale Profile Matcher ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SampleProfileMatcher used for stale
// profile matching.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/SampleProfileMatcher.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
using namespace llvm;
using namespace sampleprof;
#define DEBUG_TYPE "sample-profile-matcher"
extern cl::opt<bool> SalvageStaleProfile;
extern cl::opt<bool> PersistProfileStaleness;
extern cl::opt<bool> ReportProfileStaleness;
void SampleProfileMatcher::findIRAnchors(const Function &F,
AnchorMap &IRAnchors) {
// For inlined code, recover the original callsite and callee by finding the
// top-level inline frame. e.g. For frame stack "main:1 @ foo:2 @ bar:3", the
// top-level frame is "main:1", the callsite is "1" and the callee is "foo".
auto FindTopLevelInlinedCallsite = [](const DILocation *DIL) {
assert((DIL && DIL->getInlinedAt()) && "No inlined callsite");
const DILocation *PrevDIL = nullptr;
do {
PrevDIL = DIL;
DIL = DIL->getInlinedAt();
} while (DIL->getInlinedAt());
LineLocation Callsite = FunctionSamples::getCallSiteIdentifier(
DIL, FunctionSamples::ProfileIsFS);
StringRef CalleeName = PrevDIL->getSubprogramLinkageName();
return std::make_pair(Callsite, FunctionId(CalleeName));
};
auto GetCanonicalCalleeName = [](const CallBase *CB) {
StringRef CalleeName = UnknownIndirectCallee;
if (Function *Callee = CB->getCalledFunction())
CalleeName = FunctionSamples::getCanonicalFnName(Callee->getName());
return CalleeName;
};
// Extract profile matching anchors in the IR.
for (auto &BB : F) {
for (auto &I : BB) {
DILocation *DIL = I.getDebugLoc();
if (!DIL)
continue;
if (FunctionSamples::ProfileIsProbeBased) {
if (auto Probe = extractProbe(I)) {
// Flatten inlined IR for the matching.
if (DIL->getInlinedAt()) {
IRAnchors.emplace(FindTopLevelInlinedCallsite(DIL));
} else {
// Use empty StringRef for basic block probe.
StringRef CalleeName;
if (const auto *CB = dyn_cast<CallBase>(&I)) {
// Skip the probe inst whose callee name is "llvm.pseudoprobe".
if (!isa<IntrinsicInst>(&I))
CalleeName = GetCanonicalCalleeName(CB);
}
LineLocation Loc = LineLocation(Probe->Id, 0);
IRAnchors.emplace(Loc, FunctionId(CalleeName));
}
}
} else {
// TODO: For line-number based profile(AutoFDO), currently only support
// find callsite anchors. In future, we need to parse all the non-call
// instructions to extract the line locations for profile matching.
if (!isa<CallBase>(&I) || isa<IntrinsicInst>(&I))
continue;
if (DIL->getInlinedAt()) {
IRAnchors.emplace(FindTopLevelInlinedCallsite(DIL));
} else {
LineLocation Callsite = FunctionSamples::getCallSiteIdentifier(
DIL, FunctionSamples::ProfileIsFS);
StringRef CalleeName = GetCanonicalCalleeName(dyn_cast<CallBase>(&I));
IRAnchors.emplace(Callsite, FunctionId(CalleeName));
}
}
}
}
}
void SampleProfileMatcher::findProfileAnchors(const FunctionSamples &FS,
AnchorMap &ProfileAnchors) {
auto isInvalidLineOffset = [](uint32_t LineOffset) {
return LineOffset & 0x8000;
};
auto InsertAnchor = [](const LineLocation &Loc, const FunctionId &CalleeName,
AnchorMap &ProfileAnchors) {
auto Ret = ProfileAnchors.try_emplace(Loc, CalleeName);
if (!Ret.second) {
// For multiple callees, which indicates it's an indirect call, we use a
// dummy name(UnknownIndirectCallee) as the indrect callee name.
Ret.first->second = FunctionId(UnknownIndirectCallee);
}
};
for (const auto &I : FS.getBodySamples()) {
const LineLocation &Loc = I.first;
if (isInvalidLineOffset(Loc.LineOffset))
continue;
for (const auto &C : I.second.getCallTargets())
InsertAnchor(Loc, C.first, ProfileAnchors);
}
for (const auto &I : FS.getCallsiteSamples()) {
const LineLocation &Loc = I.first;
if (isInvalidLineOffset(Loc.LineOffset))
continue;
for (const auto &C : I.second)
InsertAnchor(Loc, C.first, ProfileAnchors);
}
}
LocToLocMap SampleProfileMatcher::longestCommonSequence(
const AnchorList &AnchorList1, const AnchorList &AnchorList2) const {
int32_t Size1 = AnchorList1.size(), Size2 = AnchorList2.size(),
MaxDepth = Size1 + Size2;
auto Index = [&](int32_t I) { return I + MaxDepth; };
LocToLocMap EqualLocations;
if (MaxDepth == 0)
return EqualLocations;
// Backtrack the SES result.
auto Backtrack = [&](const std::vector<std::vector<int32_t>> &Trace,
const AnchorList &AnchorList1,
const AnchorList &AnchorList2,
LocToLocMap &EqualLocations) {
int32_t X = Size1, Y = Size2;
for (int32_t Depth = Trace.size() - 1; X > 0 || Y > 0; Depth--) {
const auto &P = Trace[Depth];
int32_t K = X - Y;
int32_t PrevK = K;
if (K == -Depth || (K != Depth && P[Index(K - 1)] < P[Index(K + 1)]))
PrevK = K + 1;
else
PrevK = K - 1;
int32_t PrevX = P[Index(PrevK)];
int32_t PrevY = PrevX - PrevK;
while (X > PrevX && Y > PrevY) {
X--;
Y--;
EqualLocations.insert({AnchorList1[X].first, AnchorList2[Y].first});
}
if (Depth == 0)
break;
if (Y == PrevY)
X--;
else if (X == PrevX)
Y--;
X = PrevX;
Y = PrevY;
}
};
// The greedy LCS/SES algorithm.
// An array contains the endpoints of the furthest reaching D-paths.
std::vector<int32_t> V(2 * MaxDepth + 1, -1);
V[Index(1)] = 0;
// Trace is used to backtrack the SES result.
std::vector<std::vector<int32_t>> Trace;
for (int32_t Depth = 0; Depth <= MaxDepth; Depth++) {
Trace.push_back(V);
for (int32_t K = -Depth; K <= Depth; K += 2) {
int32_t X = 0, Y = 0;
if (K == -Depth || (K != Depth && V[Index(K - 1)] < V[Index(K + 1)]))
X = V[Index(K + 1)];
else
X = V[Index(K - 1)] + 1;
Y = X - K;
while (X < Size1 && Y < Size2 &&
AnchorList1[X].second == AnchorList2[Y].second)
X++, Y++;
V[Index(K)] = X;
if (X >= Size1 && Y >= Size2) {
// Length of an SES is D.
Backtrack(Trace, AnchorList1, AnchorList2, EqualLocations);
return EqualLocations;
}
}
}
// Length of an SES is greater than MaxDepth.
return EqualLocations;
}
void SampleProfileMatcher::matchNonCallsiteLocs(
const LocToLocMap &MatchedAnchors, const AnchorMap &IRAnchors,
LocToLocMap &IRToProfileLocationMap) {
auto InsertMatching = [&](const LineLocation &From, const LineLocation &To) {
// Skip the unchanged location mapping to save memory.
if (From != To)
IRToProfileLocationMap.insert({From, To});
};
// Use function's beginning location as the initial anchor.
int32_t LocationDelta = 0;
SmallVector<LineLocation> LastMatchedNonAnchors;
for (const auto &IR : IRAnchors) {
const auto &Loc = IR.first;
bool IsMatchedAnchor = false;
// Match the anchor location in lexical order.
auto R = MatchedAnchors.find(Loc);
if (R != MatchedAnchors.end()) {
const auto &Candidate = R->second;
InsertMatching(Loc, Candidate);
LLVM_DEBUG(dbgs() << "Callsite with callee:" << IR.second.stringRef()
<< " is matched from " << Loc << " to " << Candidate
<< "\n");
LocationDelta = Candidate.LineOffset - Loc.LineOffset;
// Match backwards for non-anchor locations.
// The locations in LastMatchedNonAnchors have been matched forwards
// based on the previous anchor, spilt it evenly and overwrite the
// second half based on the current anchor.
for (size_t I = (LastMatchedNonAnchors.size() + 1) / 2;
I < LastMatchedNonAnchors.size(); I++) {
const auto &L = LastMatchedNonAnchors[I];
uint32_t CandidateLineOffset = L.LineOffset + LocationDelta;
LineLocation Candidate(CandidateLineOffset, L.Discriminator);
InsertMatching(L, Candidate);
LLVM_DEBUG(dbgs() << "Location is rematched backwards from " << L
<< " to " << Candidate << "\n");
}
IsMatchedAnchor = true;
LastMatchedNonAnchors.clear();
}
// Match forwards for non-anchor locations.
if (!IsMatchedAnchor) {
uint32_t CandidateLineOffset = Loc.LineOffset + LocationDelta;
LineLocation Candidate(CandidateLineOffset, Loc.Discriminator);
InsertMatching(Loc, Candidate);
LLVM_DEBUG(dbgs() << "Location is matched from " << Loc << " to "
<< Candidate << "\n");
LastMatchedNonAnchors.emplace_back(Loc);
}
}
}
// Call target name anchor based profile fuzzy matching.
// Input:
// For IR locations, the anchor is the callee name of direct callsite; For
// profile locations, it's the call target name for BodySamples or inlinee's
// profile name for CallsiteSamples.
// Matching heuristic:
// First match all the anchors using the diff algorithm, then split the
// non-anchor locations between the two anchors evenly, first half are matched
// based on the start anchor, second half are matched based on the end anchor.
// For example, given:
// IR locations: [1, 2(foo), 3, 5, 6(bar), 7]
// Profile locations: [1, 2, 3(foo), 4, 7, 8(bar), 9]
// The matching gives:
// [1, 2(foo), 3, 5, 6(bar), 7]
// | | | | | |
// [1, 2, 3(foo), 4, 7, 8(bar), 9]
// The output mapping: [2->3, 3->4, 5->7, 6->8, 7->9].
void SampleProfileMatcher::runStaleProfileMatching(
const Function &F, const AnchorMap &IRAnchors,
const AnchorMap &ProfileAnchors, LocToLocMap &IRToProfileLocationMap) {
LLVM_DEBUG(dbgs() << "Run stale profile matching for " << F.getName()
<< "\n");
assert(IRToProfileLocationMap.empty() &&
"Run stale profile matching only once per function");
AnchorList FilteredProfileAnchorList;
for (const auto &I : ProfileAnchors)
FilteredProfileAnchorList.emplace_back(I);
AnchorList FilteredIRAnchorsList;
// Filter the non-callsite from IRAnchors.
for (const auto &I : IRAnchors) {
if (I.second.stringRef().empty())
continue;
FilteredIRAnchorsList.emplace_back(I);
}
if (FilteredIRAnchorsList.empty() || FilteredProfileAnchorList.empty())
return;
// Match the callsite anchors by finding the longest common subsequence
// between IR and profile. Note that we need to use IR anchor as base(A side)
// to align with the order of IRToProfileLocationMap.
LocToLocMap MatchedAnchors =
longestCommonSequence(FilteredIRAnchorsList, FilteredProfileAnchorList);
// Match the non-callsite locations and write the result to
// IRToProfileLocationMap.
matchNonCallsiteLocs(MatchedAnchors, IRAnchors, IRToProfileLocationMap);
}
void SampleProfileMatcher::runOnFunction(Function &F) {
// We need to use flattened function samples for matching.
// Unlike IR, which includes all callsites from the source code, the callsites
// in profile only show up when they are hit by samples, i,e. the profile
// callsites in one context may differ from those in another context. To get
// the maximum number of callsites, we merge the function profiles from all
// contexts, aka, the flattened profile to find profile anchors.
const auto *FSFlattened = getFlattenedSamplesFor(F);
if (!FSFlattened)
return;
// Anchors for IR. It's a map from IR location to callee name, callee name is
// empty for non-call instruction and use a dummy name(UnknownIndirectCallee)
// for unknown indrect callee name.
AnchorMap IRAnchors;
findIRAnchors(F, IRAnchors);
// Anchors for profile. It's a map from callsite location to a set of callee
// name.
AnchorMap ProfileAnchors;
findProfileAnchors(*FSFlattened, ProfileAnchors);
// Compute the callsite match states for profile staleness report.
if (ReportProfileStaleness || PersistProfileStaleness)
recordCallsiteMatchStates(F, IRAnchors, ProfileAnchors, nullptr);
// For probe-based profiles, run matching only when the current profile is not
// valid.
if (SalvageStaleProfile && (!FunctionSamples::ProfileIsProbeBased ||
!ProbeManager->profileIsValid(F, *FSFlattened))) {
// For imported functions, the checksum metadata(pseudo_probe_desc) are
// dropped, so we leverage function attribute(profile-checksum-mismatch) to
// transfer the info: add the attribute during pre-link phase and check it
// during post-link phase(see "profileIsValid").
if (FunctionSamples::ProfileIsProbeBased &&
LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink)
F.addFnAttr("profile-checksum-mismatch");
// The matching result will be saved to IRToProfileLocationMap, create a
// new map for each function.
auto &IRToProfileLocationMap = getIRToProfileLocationMap(F);
runStaleProfileMatching(F, IRAnchors, ProfileAnchors,
IRToProfileLocationMap);
// Find and update callsite match states after matching.
if (ReportProfileStaleness || PersistProfileStaleness)
recordCallsiteMatchStates(F, IRAnchors, ProfileAnchors,
&IRToProfileLocationMap);
}
}
void SampleProfileMatcher::recordCallsiteMatchStates(
const Function &F, const AnchorMap &IRAnchors,
const AnchorMap &ProfileAnchors,
const LocToLocMap *IRToProfileLocationMap) {
bool IsPostMatch = IRToProfileLocationMap != nullptr;
auto &CallsiteMatchStates =
FuncCallsiteMatchStates[FunctionSamples::getCanonicalFnName(F.getName())];
auto MapIRLocToProfileLoc = [&](const LineLocation &IRLoc) {
// IRToProfileLocationMap is null in pre-match phrase.
if (!IRToProfileLocationMap)
return IRLoc;
const auto &ProfileLoc = IRToProfileLocationMap->find(IRLoc);
if (ProfileLoc != IRToProfileLocationMap->end())
return ProfileLoc->second;
else
return IRLoc;
};
for (const auto &I : IRAnchors) {
// After fuzzy profile matching, use the matching result to remap the
// current IR callsite.
const auto &ProfileLoc = MapIRLocToProfileLoc(I.first);
const auto &IRCalleeId = I.second;
const auto &It = ProfileAnchors.find(ProfileLoc);
if (It == ProfileAnchors.end())
continue;
const auto &ProfCalleeId = It->second;
if (IRCalleeId == ProfCalleeId) {
auto It = CallsiteMatchStates.find(ProfileLoc);
if (It == CallsiteMatchStates.end())
CallsiteMatchStates.emplace(ProfileLoc, MatchState::InitialMatch);
else if (IsPostMatch) {
if (It->second == MatchState::InitialMatch)
It->second = MatchState::UnchangedMatch;
else if (It->second == MatchState::InitialMismatch)
It->second = MatchState::RecoveredMismatch;
}
}
}
// Check if there are any callsites in the profile that does not match to any
// IR callsites.
for (const auto &I : ProfileAnchors) {
const auto &Loc = I.first;
assert(!I.second.stringRef().empty() && "Callees should not be empty");
auto It = CallsiteMatchStates.find(Loc);
if (It == CallsiteMatchStates.end())
CallsiteMatchStates.emplace(Loc, MatchState::InitialMismatch);
else if (IsPostMatch) {
// Update the state if it's not matched(UnchangedMatch or
// RecoveredMismatch).
if (It->second == MatchState::InitialMismatch)
It->second = MatchState::UnchangedMismatch;
else if (It->second == MatchState::InitialMatch)
It->second = MatchState::RemovedMatch;
}
}
}
void SampleProfileMatcher::countMismatchedFuncSamples(const FunctionSamples &FS,
bool IsTopLevel) {
const auto *FuncDesc = ProbeManager->getDesc(FS.getGUID());
// Skip the function that is external or renamed.
if (!FuncDesc)
return;
if (ProbeManager->profileIsHashMismatched(*FuncDesc, FS)) {
if (IsTopLevel)
NumStaleProfileFunc++;
// Given currently all probe ids are after block probe ids, once the
// checksum is mismatched, it's likely all the callites are mismatched and
// dropped. We conservatively count all the samples as mismatched and stop
// counting the inlinees' profiles.
MismatchedFunctionSamples += FS.getTotalSamples();
return;
}
// Even the current-level function checksum is matched, it's possible that the
// nested inlinees' checksums are mismatched that affect the inlinee's sample
// loading, we need to go deeper to check the inlinees' function samples.
// Similarly, count all the samples as mismatched if the inlinee's checksum is
// mismatched using this recursive function.
for (const auto &I : FS.getCallsiteSamples())
for (const auto &CS : I.second)
countMismatchedFuncSamples(CS.second, false);
}
void SampleProfileMatcher::countMismatchedCallsiteSamples(
const FunctionSamples &FS) {
auto It = FuncCallsiteMatchStates.find(FS.getFuncName());
// Skip it if no mismatched callsite or this is an external function.
if (It == FuncCallsiteMatchStates.end() || It->second.empty())
return;
const auto &CallsiteMatchStates = It->second;
auto findMatchState = [&](const LineLocation &Loc) {
auto It = CallsiteMatchStates.find(Loc);
if (It == CallsiteMatchStates.end())
return MatchState::Unknown;
return It->second;
};
auto AttributeMismatchedSamples = [&](const enum MatchState &State,
uint64_t Samples) {
if (isMismatchState(State))
MismatchedCallsiteSamples += Samples;
else if (State == MatchState::RecoveredMismatch)
RecoveredCallsiteSamples += Samples;
};
// The non-inlined callsites are saved in the body samples of function
// profile, go through it to count the non-inlined callsite samples.
for (const auto &I : FS.getBodySamples())
AttributeMismatchedSamples(findMatchState(I.first), I.second.getSamples());
// Count the inlined callsite samples.
for (const auto &I : FS.getCallsiteSamples()) {
auto State = findMatchState(I.first);
uint64_t CallsiteSamples = 0;
for (const auto &CS : I.second)
CallsiteSamples += CS.second.getTotalSamples();
AttributeMismatchedSamples(State, CallsiteSamples);
if (isMismatchState(State))
continue;
// When the current level of inlined call site matches the profiled call
// site, we need to go deeper along the inline tree to count mismatches from
// lower level inlinees.
for (const auto &CS : I.second)
countMismatchedCallsiteSamples(CS.second);
}
}
void SampleProfileMatcher::countMismatchCallsites(const FunctionSamples &FS) {
auto It = FuncCallsiteMatchStates.find(FS.getFuncName());
// Skip it if no mismatched callsite or this is an external function.
if (It == FuncCallsiteMatchStates.end() || It->second.empty())
return;
const auto &MatchStates = It->second;
[[maybe_unused]] bool OnInitialState =
isInitialState(MatchStates.begin()->second);
for (const auto &I : MatchStates) {
TotalProfiledCallsites++;
assert(
(OnInitialState ? isInitialState(I.second) : isFinalState(I.second)) &&
"Profile matching state is inconsistent");
if (isMismatchState(I.second))
NumMismatchedCallsites++;
else if (I.second == MatchState::RecoveredMismatch)
NumRecoveredCallsites++;
}
}
void SampleProfileMatcher::computeAndReportProfileStaleness() {
if (!ReportProfileStaleness && !PersistProfileStaleness)
return;
// Count profile mismatches for profile staleness report.
for (const auto &F : M) {
if (skipProfileForFunction(F))
continue;
// As the stats will be merged by linker, skip reporting the metrics for
// imported functions to avoid repeated counting.
if (GlobalValue::isAvailableExternallyLinkage(F.getLinkage()))
continue;
const auto *FS = Reader.getSamplesFor(F);
if (!FS)
continue;
TotalProfiledFunc++;
TotalFunctionSamples += FS->getTotalSamples();
// Checksum mismatch is only used in pseudo-probe mode.
if (FunctionSamples::ProfileIsProbeBased)
countMismatchedFuncSamples(*FS, true);
// Count mismatches and samples for calliste.
countMismatchCallsites(*FS);
countMismatchedCallsiteSamples(*FS);
}
if (ReportProfileStaleness) {
if (FunctionSamples::ProfileIsProbeBased) {
errs() << "(" << NumStaleProfileFunc << "/" << TotalProfiledFunc
<< ") of functions' profile are invalid and ("
<< MismatchedFunctionSamples << "/" << TotalFunctionSamples
<< ") of samples are discarded due to function hash mismatch.\n";
}
errs() << "(" << (NumMismatchedCallsites + NumRecoveredCallsites) << "/"
<< TotalProfiledCallsites
<< ") of callsites' profile are invalid and ("
<< (MismatchedCallsiteSamples + RecoveredCallsiteSamples) << "/"
<< TotalFunctionSamples
<< ") of samples are discarded due to callsite location mismatch.\n";
errs() << "(" << NumRecoveredCallsites << "/"
<< (NumRecoveredCallsites + NumMismatchedCallsites)
<< ") of callsites and (" << RecoveredCallsiteSamples << "/"
<< (RecoveredCallsiteSamples + MismatchedCallsiteSamples)
<< ") of samples are recovered by stale profile matching.\n";
}
if (PersistProfileStaleness) {
LLVMContext &Ctx = M.getContext();
MDBuilder MDB(Ctx);
SmallVector<std::pair<StringRef, uint64_t>> ProfStatsVec;
if (FunctionSamples::ProfileIsProbeBased) {
ProfStatsVec.emplace_back("NumStaleProfileFunc", NumStaleProfileFunc);
ProfStatsVec.emplace_back("TotalProfiledFunc", TotalProfiledFunc);
ProfStatsVec.emplace_back("MismatchedFunctionSamples",
MismatchedFunctionSamples);
ProfStatsVec.emplace_back("TotalFunctionSamples", TotalFunctionSamples);
}
ProfStatsVec.emplace_back("NumMismatchedCallsites", NumMismatchedCallsites);
ProfStatsVec.emplace_back("NumRecoveredCallsites", NumRecoveredCallsites);
ProfStatsVec.emplace_back("TotalProfiledCallsites", TotalProfiledCallsites);
ProfStatsVec.emplace_back("MismatchedCallsiteSamples",
MismatchedCallsiteSamples);
ProfStatsVec.emplace_back("RecoveredCallsiteSamples",
RecoveredCallsiteSamples);
auto *MD = MDB.createLLVMStats(ProfStatsVec);
auto *NMD = M.getOrInsertNamedMetadata("llvm.stats");
NMD->addOperand(MD);
}
}
void SampleProfileMatcher::runOnModule() {
ProfileConverter::flattenProfile(Reader.getProfiles(), FlattenedProfiles,
FunctionSamples::ProfileIsCS);
for (auto &F : M) {
if (skipProfileForFunction(F))
continue;
runOnFunction(F);
}
if (SalvageStaleProfile)
distributeIRToProfileLocationMap();
computeAndReportProfileStaleness();
}
void SampleProfileMatcher::distributeIRToProfileLocationMap(
FunctionSamples &FS) {
const auto ProfileMappings = FuncMappings.find(FS.getFuncName());
if (ProfileMappings != FuncMappings.end()) {
FS.setIRToProfileLocationMap(&(ProfileMappings->second));
}
for (auto &Callees :
const_cast<CallsiteSampleMap &>(FS.getCallsiteSamples())) {
for (auto &FS : Callees.second) {
distributeIRToProfileLocationMap(FS.second);
}
}
}
// Use a central place to distribute the matching results. Outlined and inlined
// profile with the function name will be set to the same pointer.
void SampleProfileMatcher::distributeIRToProfileLocationMap() {
for (auto &I : Reader.getProfiles()) {
distributeIRToProfileLocationMap(I.second);
}
}