Like in the test case:
```c++
struct String {
String(const String &) {}
};
struct MatchComponent {
unsigned numbers[2];
String prerelease;
MatchComponent(MatchComponent const &) = default;
};
MatchComponent get();
void consume(MatchComponent const &);
MatchComponent parseMatchComponent() {
MatchComponent component = get();
component.numbers[0] = 10;
component.numbers[1] = 20;
return component; // We should have no stack addr escape warning here.
}
void top() {
consume(parseMatchComponent());
}
```
When calling `consume(parseMatchComponent())` the
`parseMatchComponent()` would return a copy of a temporary of
`component`. That copy would invoke the
`MatchComponent::MatchComponent(const MatchComponent &)` ctor.
That ctor would have a (reference typed) ParamVarRegion, holding the
location (lvalue) of the object we are about to copy (&component). So
far so good, but just before evaluating the binding operation for
initializing the `numbers` field of the temporary, we evaluate the
ArrayInitLoopExpr representing the by-value elementwise copy of the
array `component.numbers`. This is represented by a LazyCompoundVal,
because we (usually) don't just copy large arrays and bind many
individual direct bindings. Rather, we take a snapshot by using a LCV.
However, notice that the LCV representing this copy would look like
this:
lazyCompoundVal{ParamVarRegion{"reference param of cctor"}.numbers}
Notice that it refers to the numbers field of a reference. It would be
much better to desugar the reference to the actual object, thus it
should be: `lazyCompoundVal{component.numbers}`
Actually, when binding the result of the ArrayInitLoopExpr to the
`temp_object.numbers` in the compiler-generated member initializer of
the cctor, we should have two individual direct bindings because this is
a "small array":
```
binding &Element{temp_object.numbers, 0} <- loadFrom(&Element{component.numbers, 0})
binding &Element{temp_object.numbers, 1} <- loadFrom(&Element{component.numbers, 1})
```
Where `loadFrom(...)` would be:
```
loadFrom(&Element{component.numbers, 0}): 10 U32b
loadFrom(&Element{component.numbers, 1}): 20 U32b
```
So the store should look like this, after PostInitializer of
`temp_object.numbers`:
```
temp_object at offset 0: 10 U32b
temp_object at offset 32: 20 U32b
```
The lesson is that it's okay to have TypedValueRegions of references as
long as we don't form subregions of those. If we ever want to refer to a
subregion of a "reference" we actually meant to "desugar" the reference
and slice a subregion of the pointee of the reference instead.
Once this canonicalization is in place, we can also drop the special
handling of references in `ProcessInitializer`, because now reference
TypedValueRegions are eagerly desugared into their referee region when
forming a subregion of it.
There should be no practical differences, but there are of course bugs
that this patch may surface.
7.9 KiB
7.9 KiB