…ted. (#89998)" (#90250)
This partially reverts commit 7aedd7dc75.
This change removes calls to the deprecated member functions. It does
not mark the functions deprecated yet and does not disable the
deprecation warning in TypeSwitch. This seems to cause problems with
MSVC.
344 lines
16 KiB
C++
344 lines
16 KiB
C++
//===-- CustomIntrinsicCall.cpp -------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/CustomIntrinsicCall.h"
|
|
#include "flang/Evaluate/expression.h"
|
|
#include "flang/Evaluate/fold.h"
|
|
#include "flang/Evaluate/tools.h"
|
|
#include "flang/Lower/StatementContext.h"
|
|
#include "flang/Optimizer/Builder/IntrinsicCall.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Semantics/tools.h"
|
|
#include <optional>
|
|
|
|
/// Is this a call to MIN or MAX intrinsic with arguments that may be absent at
|
|
/// runtime? This is a special case because MIN and MAX can have any number of
|
|
/// arguments.
|
|
static bool isMinOrMaxWithDynamicallyOptionalArg(
|
|
llvm::StringRef name, const Fortran::evaluate::ProcedureRef &procRef) {
|
|
if (name != "min" && name != "max")
|
|
return false;
|
|
const auto &args = procRef.arguments();
|
|
std::size_t argSize = args.size();
|
|
if (argSize <= 2)
|
|
return false;
|
|
for (std::size_t i = 2; i < argSize; ++i) {
|
|
if (auto *expr =
|
|
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(args[i]))
|
|
if (Fortran::evaluate::MayBePassedAsAbsentOptional(*expr))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Is this a call to ISHFTC intrinsic with a SIZE argument that may be absent
|
|
/// at runtime? This is a special case because the SIZE value to be applied
|
|
/// when absent is not zero.
|
|
static bool isIshftcWithDynamicallyOptionalArg(
|
|
llvm::StringRef name, const Fortran::evaluate::ProcedureRef &procRef) {
|
|
if (name != "ishftc" || procRef.arguments().size() < 3)
|
|
return false;
|
|
auto *expr = Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(
|
|
procRef.arguments()[2]);
|
|
return expr && Fortran::evaluate::MayBePassedAsAbsentOptional(*expr);
|
|
}
|
|
|
|
/// Is this a call to ASSOCIATED where the TARGET is an OPTIONAL (but not a
|
|
/// deallocated allocatable or disassociated pointer)?
|
|
/// Subtle: contrary to other intrinsic optional arguments, disassociated
|
|
/// POINTER and unallocated ALLOCATABLE actual argument are not considered
|
|
/// absent here. This is because ASSOCIATED has special requirements for TARGET
|
|
/// actual arguments that are POINTERs. There is no precise requirements for
|
|
/// ALLOCATABLEs, but all existing Fortran compilers treat them similarly to
|
|
/// POINTERs. That is: unallocated TARGETs cause ASSOCIATED to rerun false. The
|
|
/// runtime deals with the disassociated/unallocated case. Simply ensures that
|
|
/// TARGET that are OPTIONAL get conditionally emboxed here to convey the
|
|
/// optional aspect to the runtime.
|
|
static bool isAssociatedWithDynamicallyOptionalArg(
|
|
llvm::StringRef name, const Fortran::evaluate::ProcedureRef &procRef) {
|
|
if (name != "associated" || procRef.arguments().size() < 2)
|
|
return false;
|
|
auto *expr = Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(
|
|
procRef.arguments()[1]);
|
|
const Fortran::semantics::Symbol *sym{
|
|
expr ? Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)
|
|
: nullptr};
|
|
return (sym && Fortran::semantics::IsOptional(*sym));
|
|
}
|
|
|
|
bool Fortran::lower::intrinsicRequiresCustomOptionalHandling(
|
|
const Fortran::evaluate::ProcedureRef &procRef,
|
|
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
|
|
AbstractConverter &converter) {
|
|
llvm::StringRef name = intrinsic.name;
|
|
return isMinOrMaxWithDynamicallyOptionalArg(name, procRef) ||
|
|
isIshftcWithDynamicallyOptionalArg(name, procRef) ||
|
|
isAssociatedWithDynamicallyOptionalArg(name, procRef);
|
|
}
|
|
|
|
/// Generate the FIR+MLIR operations for the generic intrinsic \p name
|
|
/// with arguments \p args and the expected result type \p resultType.
|
|
/// Returned fir::ExtendedValue is the returned Fortran intrinsic value.
|
|
fir::ExtendedValue
|
|
Fortran::lower::genIntrinsicCall(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
llvm::StringRef name,
|
|
std::optional<mlir::Type> resultType,
|
|
llvm::ArrayRef<fir::ExtendedValue> args,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::AbstractConverter *converter) {
|
|
auto [result, mustBeFreed] =
|
|
fir::genIntrinsicCall(builder, loc, name, resultType, args, converter);
|
|
if (mustBeFreed) {
|
|
mlir::Value addr = fir::getBase(result);
|
|
if (auto *box = result.getBoxOf<fir::BoxValue>())
|
|
addr =
|
|
builder.create<fir::BoxAddrOp>(loc, box->getMemTy(), box->getAddr());
|
|
fir::FirOpBuilder *bldr = &builder;
|
|
stmtCtx.attachCleanup([=]() { bldr->create<fir::FreeMemOp>(loc, addr); });
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void prepareMinOrMaxArguments(
|
|
const Fortran::evaluate::ProcedureRef &procRef,
|
|
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
|
|
std::optional<mlir::Type> retTy,
|
|
const Fortran::lower::OperandPrepare &prepareOptionalArgument,
|
|
const Fortran::lower::OperandPrepareAs &prepareOtherArgument,
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
assert(retTy && "MIN and MAX must have a return type");
|
|
mlir::Type resultType = *retTy;
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
if (fir::isa_char(resultType))
|
|
TODO(loc, "CHARACTER MIN and MAX with dynamically optional arguments");
|
|
for (auto arg : llvm::enumerate(procRef.arguments())) {
|
|
const auto *expr =
|
|
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
|
|
if (!expr)
|
|
continue;
|
|
if (arg.index() <= 1 ||
|
|
!Fortran::evaluate::MayBePassedAsAbsentOptional(*expr)) {
|
|
// Non optional arguments.
|
|
prepareOtherArgument(*expr, fir::LowerIntrinsicArgAs::Value);
|
|
} else {
|
|
// Dynamically optional arguments.
|
|
// Subtle: even for scalar the if-then-else will be generated in the loop
|
|
// nest because the then part will require the current extremum value that
|
|
// may depend on previous array element argument and cannot be outlined.
|
|
prepareOptionalArgument(*expr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static fir::ExtendedValue
|
|
lowerMinOrMax(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
llvm::StringRef name, std::optional<mlir::Type> retTy,
|
|
const Fortran::lower::OperandPresent &isPresentCheck,
|
|
const Fortran::lower::OperandGetter &getOperand,
|
|
std::size_t numOperands,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
assert(numOperands >= 2 && !isPresentCheck(0) && !isPresentCheck(1) &&
|
|
"min/max must have at least two non-optional args");
|
|
assert(retTy && "MIN and MAX must have a return type");
|
|
mlir::Type resultType = *retTy;
|
|
llvm::SmallVector<fir::ExtendedValue> args;
|
|
const bool loadOperand = true;
|
|
args.push_back(getOperand(0, loadOperand));
|
|
args.push_back(getOperand(1, loadOperand));
|
|
mlir::Value extremum = fir::getBase(
|
|
genIntrinsicCall(builder, loc, name, resultType, args, stmtCtx));
|
|
|
|
for (std::size_t opIndex = 2; opIndex < numOperands; ++opIndex) {
|
|
if (std::optional<mlir::Value> isPresentRuntimeCheck =
|
|
isPresentCheck(opIndex)) {
|
|
// Argument is dynamically optional.
|
|
extremum =
|
|
builder
|
|
.genIfOp(loc, {resultType}, *isPresentRuntimeCheck,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
llvm::SmallVector<fir::ExtendedValue> args;
|
|
args.emplace_back(extremum);
|
|
args.emplace_back(getOperand(opIndex, loadOperand));
|
|
fir::ExtendedValue newExtremum = genIntrinsicCall(
|
|
builder, loc, name, resultType, args, stmtCtx);
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(newExtremum));
|
|
})
|
|
.genElse([&]() { builder.create<fir::ResultOp>(loc, extremum); })
|
|
.getResults()[0];
|
|
} else {
|
|
// Argument is know to be present at compile time.
|
|
llvm::SmallVector<fir::ExtendedValue> args;
|
|
args.emplace_back(extremum);
|
|
args.emplace_back(getOperand(opIndex, loadOperand));
|
|
extremum = fir::getBase(
|
|
genIntrinsicCall(builder, loc, name, resultType, args, stmtCtx));
|
|
}
|
|
}
|
|
return extremum;
|
|
}
|
|
|
|
static void prepareIshftcArguments(
|
|
const Fortran::evaluate::ProcedureRef &procRef,
|
|
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
|
|
std::optional<mlir::Type> retTy,
|
|
const Fortran::lower::OperandPrepare &prepareOptionalArgument,
|
|
const Fortran::lower::OperandPrepareAs &prepareOtherArgument,
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
for (auto arg : llvm::enumerate(procRef.arguments())) {
|
|
const auto *expr =
|
|
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
|
|
assert(expr && "expected all ISHFTC argument to be textually present here");
|
|
if (arg.index() == 2) {
|
|
assert(Fortran::evaluate::MayBePassedAsAbsentOptional(*expr) &&
|
|
"expected ISHFTC SIZE arg to be dynamically optional");
|
|
prepareOptionalArgument(*expr);
|
|
} else {
|
|
// Non optional arguments.
|
|
prepareOtherArgument(*expr, fir::LowerIntrinsicArgAs::Value);
|
|
}
|
|
}
|
|
}
|
|
|
|
static fir::ExtendedValue
|
|
lowerIshftc(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
llvm::StringRef name, std::optional<mlir::Type> retTy,
|
|
const Fortran::lower::OperandPresent &isPresentCheck,
|
|
const Fortran::lower::OperandGetter &getOperand,
|
|
std::size_t numOperands,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
assert(numOperands == 3 && !isPresentCheck(0) && !isPresentCheck(1) &&
|
|
isPresentCheck(2) &&
|
|
"only ISHFTC SIZE arg is expected to be dynamically optional here");
|
|
assert(retTy && "ISFHTC must have a return type");
|
|
mlir::Type resultType = *retTy;
|
|
llvm::SmallVector<fir::ExtendedValue> args;
|
|
const bool loadOperand = true;
|
|
args.push_back(getOperand(0, loadOperand));
|
|
args.push_back(getOperand(1, loadOperand));
|
|
auto iPC = isPresentCheck(2);
|
|
assert(iPC.has_value());
|
|
args.push_back(
|
|
builder
|
|
.genIfOp(loc, {resultType}, *iPC,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
fir::ExtendedValue sizeExv = getOperand(2, loadOperand);
|
|
mlir::Value size =
|
|
builder.createConvert(loc, resultType, fir::getBase(sizeExv));
|
|
builder.create<fir::ResultOp>(loc, size);
|
|
})
|
|
.genElse([&]() {
|
|
mlir::Value bitSize = builder.createIntegerConstant(
|
|
loc, resultType,
|
|
mlir::cast<mlir::IntegerType>(resultType).getWidth());
|
|
builder.create<fir::ResultOp>(loc, bitSize);
|
|
})
|
|
.getResults()[0]);
|
|
return genIntrinsicCall(builder, loc, name, resultType, args, stmtCtx);
|
|
}
|
|
|
|
static void prepareAssociatedArguments(
|
|
const Fortran::evaluate::ProcedureRef &procRef,
|
|
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
|
|
std::optional<mlir::Type> retTy,
|
|
const Fortran::lower::OperandPrepare &prepareOptionalArgument,
|
|
const Fortran::lower::OperandPrepareAs &prepareOtherArgument,
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
const auto *pointer = procRef.UnwrapArgExpr(0);
|
|
const auto *optionalTarget = procRef.UnwrapArgExpr(1);
|
|
assert(pointer && optionalTarget &&
|
|
"expected call to associated with a target");
|
|
prepareOtherArgument(*pointer, fir::LowerIntrinsicArgAs::Inquired);
|
|
prepareOptionalArgument(*optionalTarget);
|
|
}
|
|
|
|
static fir::ExtendedValue
|
|
lowerAssociated(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
llvm::StringRef name, std::optional<mlir::Type> resultType,
|
|
const Fortran::lower::OperandPresent &isPresentCheck,
|
|
const Fortran::lower::OperandGetter &getOperand,
|
|
std::size_t numOperands,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
assert(numOperands == 2 && "expect two arguments when TARGET is OPTIONAL");
|
|
llvm::SmallVector<fir::ExtendedValue> args;
|
|
args.push_back(getOperand(0, /*loadOperand=*/false));
|
|
// Ensure a null descriptor is passed to the code lowering Associated if
|
|
// TARGET is absent.
|
|
fir::ExtendedValue targetExv = getOperand(1, /*loadOperand=*/false);
|
|
mlir::Value targetBase = fir::getBase(targetExv);
|
|
// subtle: isPresentCheck would test for an unallocated/disassociated target,
|
|
// while the optionality of the target pointer/allocatable is what must be
|
|
// checked here.
|
|
mlir::Value isPresent =
|
|
builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), targetBase);
|
|
mlir::Type targetType = fir::unwrapRefType(targetBase.getType());
|
|
mlir::Type targetValueType = fir::unwrapPassByRefType(targetType);
|
|
mlir::Type boxType = mlir::isa<fir::BaseBoxType>(targetType)
|
|
? targetType
|
|
: fir::BoxType::get(targetValueType);
|
|
fir::BoxValue targetBox =
|
|
builder
|
|
.genIfOp(loc, {boxType}, isPresent,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
mlir::Value box = builder.createBox(loc, targetExv);
|
|
mlir::Value cast = builder.createConvert(loc, boxType, box);
|
|
builder.create<fir::ResultOp>(loc, cast);
|
|
})
|
|
.genElse([&]() {
|
|
mlir::Value absentBox = builder.create<fir::AbsentOp>(loc, boxType);
|
|
builder.create<fir::ResultOp>(loc, absentBox);
|
|
})
|
|
.getResults()[0];
|
|
args.emplace_back(std::move(targetBox));
|
|
return genIntrinsicCall(builder, loc, name, resultType, args, stmtCtx);
|
|
}
|
|
|
|
void Fortran::lower::prepareCustomIntrinsicArgument(
|
|
const Fortran::evaluate::ProcedureRef &procRef,
|
|
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
|
|
std::optional<mlir::Type> retTy,
|
|
const OperandPrepare &prepareOptionalArgument,
|
|
const OperandPrepareAs &prepareOtherArgument,
|
|
AbstractConverter &converter) {
|
|
llvm::StringRef name = intrinsic.name;
|
|
if (name == "min" || name == "max")
|
|
return prepareMinOrMaxArguments(procRef, intrinsic, retTy,
|
|
prepareOptionalArgument,
|
|
prepareOtherArgument, converter);
|
|
if (name == "associated")
|
|
return prepareAssociatedArguments(procRef, intrinsic, retTy,
|
|
prepareOptionalArgument,
|
|
prepareOtherArgument, converter);
|
|
assert(name == "ishftc" && "unexpected custom intrinsic argument call");
|
|
return prepareIshftcArguments(procRef, intrinsic, retTy,
|
|
prepareOptionalArgument, prepareOtherArgument,
|
|
converter);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::lowerCustomIntrinsic(
|
|
fir::FirOpBuilder &builder, mlir::Location loc, llvm::StringRef name,
|
|
std::optional<mlir::Type> retTy, const OperandPresent &isPresentCheck,
|
|
const OperandGetter &getOperand, std::size_t numOperands,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
if (name == "min" || name == "max")
|
|
return lowerMinOrMax(builder, loc, name, retTy, isPresentCheck, getOperand,
|
|
numOperands, stmtCtx);
|
|
if (name == "associated")
|
|
return lowerAssociated(builder, loc, name, retTy, isPresentCheck,
|
|
getOperand, numOperands, stmtCtx);
|
|
assert(name == "ishftc" && "unexpected custom intrinsic call");
|
|
return lowerIshftc(builder, loc, name, retTy, isPresentCheck, getOperand,
|
|
numOperands, stmtCtx);
|
|
}
|