Files
clang-p2996/libc/utils/gpu/loader/nvptx/nvptx-loader.cpp
Joseph Huber 89d8e70031 [libc] Export a pointer to the RPC client directly (#117913)
Summary:
We currently have an unnecessary level of indirection when initializing
the RPC client. This is a holdover from when the RPC client was not
trivially copyable and simply makes it more complicated. Here we use the
`asm` syntax to give the C++ variable a valid name so that we can just
copy to it directly.

Another advantage to this, is that if users want to piggy-back on the
same RPC interface they need only declare theirs as extern with the same
symbol name, or make it weak to optionally use it if LIBC isn't
avaialb.e
2024-11-27 14:57:38 -06:00

367 lines
14 KiB
C++

//===-- Loader Implementation for NVPTX devices --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file impelements a simple loader to run images supporting the NVPTX
// architecture. The file launches the '_start' kernel which should be provided
// by the device application start code and call ultimately call the 'main'
// function.
//
//===----------------------------------------------------------------------===//
#include "Loader.h"
#include "cuda.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include <atomic>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <thread>
#include <vector>
using namespace llvm;
using namespace object;
static void handle_error_impl(const char *file, int32_t line, CUresult err) {
if (err == CUDA_SUCCESS)
return;
const char *err_str = nullptr;
CUresult result = cuGetErrorString(err, &err_str);
if (result != CUDA_SUCCESS)
fprintf(stderr, "%s:%d:0: Unknown Error\n", file, line);
else
fprintf(stderr, "%s:%d:0: Error: %s\n", file, line, err_str);
exit(1);
}
// Gets the names of all the globals that contain functions to initialize or
// deinitialize. We need to do this manually because the NVPTX toolchain does
// not contain the necessary binary manipulation tools.
template <typename Alloc>
Expected<void *> get_ctor_dtor_array(const void *image, const size_t size,
Alloc allocator, CUmodule binary) {
auto mem_buffer = MemoryBuffer::getMemBuffer(
StringRef(reinterpret_cast<const char *>(image), size), "image",
/*RequiresNullTerminator=*/false);
Expected<ELF64LEObjectFile> elf_or_err =
ELF64LEObjectFile::create(*mem_buffer);
if (!elf_or_err)
handle_error(toString(elf_or_err.takeError()).c_str());
std::vector<std::pair<const char *, uint16_t>> ctors;
std::vector<std::pair<const char *, uint16_t>> dtors;
// CUDA has no way to iterate over all the symbols so we need to inspect the
// ELF directly using the LLVM libraries.
for (const auto &symbol : elf_or_err->symbols()) {
auto name_or_err = symbol.getName();
if (!name_or_err)
handle_error(toString(name_or_err.takeError()).c_str());
// Search for all symbols that contain a constructor or destructor.
if (!name_or_err->starts_with("__init_array_object_") &&
!name_or_err->starts_with("__fini_array_object_"))
continue;
uint16_t priority;
if (name_or_err->rsplit('_').second.getAsInteger(10, priority))
handle_error("Invalid priority for constructor or destructor");
if (name_or_err->starts_with("__init"))
ctors.emplace_back(std::make_pair(name_or_err->data(), priority));
else
dtors.emplace_back(std::make_pair(name_or_err->data(), priority));
}
// Lower priority constructors are run before higher ones. The reverse is true
// for destructors.
llvm::sort(ctors, [](auto x, auto y) { return x.second < y.second; });
llvm::sort(dtors, [](auto x, auto y) { return x.second < y.second; });
// Allocate host pinned memory to make these arrays visible to the GPU.
CUdeviceptr *dev_memory = reinterpret_cast<CUdeviceptr *>(allocator(
ctors.size() * sizeof(CUdeviceptr) + dtors.size() * sizeof(CUdeviceptr)));
uint64_t global_size = 0;
// Get the address of the global and then store the address of the constructor
// function to call in the constructor array.
CUdeviceptr *dev_ctors_start = dev_memory;
CUdeviceptr *dev_ctors_end = dev_ctors_start + ctors.size();
for (uint64_t i = 0; i < ctors.size(); ++i) {
CUdeviceptr dev_ptr;
if (CUresult err =
cuModuleGetGlobal(&dev_ptr, &global_size, binary, ctors[i].first))
handle_error(err);
if (CUresult err =
cuMemcpyDtoH(&dev_ctors_start[i], dev_ptr, sizeof(uintptr_t)))
handle_error(err);
}
// Get the address of the global and then store the address of the destructor
// function to call in the destructor array.
CUdeviceptr *dev_dtors_start = dev_ctors_end;
CUdeviceptr *dev_dtors_end = dev_dtors_start + dtors.size();
for (uint64_t i = 0; i < dtors.size(); ++i) {
CUdeviceptr dev_ptr;
if (CUresult err =
cuModuleGetGlobal(&dev_ptr, &global_size, binary, dtors[i].first))
handle_error(err);
if (CUresult err =
cuMemcpyDtoH(&dev_dtors_start[i], dev_ptr, sizeof(uintptr_t)))
handle_error(err);
}
// Obtain the address of the pointers the startup implementation uses to
// iterate the constructors and destructors.
CUdeviceptr init_start;
if (CUresult err = cuModuleGetGlobal(&init_start, &global_size, binary,
"__init_array_start"))
handle_error(err);
CUdeviceptr init_end;
if (CUresult err = cuModuleGetGlobal(&init_end, &global_size, binary,
"__init_array_end"))
handle_error(err);
CUdeviceptr fini_start;
if (CUresult err = cuModuleGetGlobal(&fini_start, &global_size, binary,
"__fini_array_start"))
handle_error(err);
CUdeviceptr fini_end;
if (CUresult err = cuModuleGetGlobal(&fini_end, &global_size, binary,
"__fini_array_end"))
handle_error(err);
// Copy the pointers to the newly written array to the symbols so the startup
// implementation can iterate them.
if (CUresult err =
cuMemcpyHtoD(init_start, &dev_ctors_start, sizeof(uintptr_t)))
handle_error(err);
if (CUresult err = cuMemcpyHtoD(init_end, &dev_ctors_end, sizeof(uintptr_t)))
handle_error(err);
if (CUresult err =
cuMemcpyHtoD(fini_start, &dev_dtors_start, sizeof(uintptr_t)))
handle_error(err);
if (CUresult err = cuMemcpyHtoD(fini_end, &dev_dtors_end, sizeof(uintptr_t)))
handle_error(err);
return dev_memory;
}
void print_kernel_resources(CUmodule binary, const char *kernel_name) {
CUfunction function;
if (CUresult err = cuModuleGetFunction(&function, binary, kernel_name))
handle_error(err);
int num_regs;
if (CUresult err =
cuFuncGetAttribute(&num_regs, CU_FUNC_ATTRIBUTE_NUM_REGS, function))
handle_error(err);
printf("Executing kernel %s:\n", kernel_name);
printf("%6s registers: %d\n", kernel_name, num_regs);
}
template <typename args_t>
CUresult launch_kernel(CUmodule binary, CUstream stream, rpc::Server &server,
const LaunchParameters &params, const char *kernel_name,
args_t kernel_args, bool print_resource_usage) {
// look up the '_start' kernel in the loaded module.
CUfunction function;
if (CUresult err = cuModuleGetFunction(&function, binary, kernel_name))
handle_error(err);
// Set up the arguments to the '_start' kernel on the GPU.
uint64_t args_size = sizeof(args_t);
void *args_config[] = {CU_LAUNCH_PARAM_BUFFER_POINTER, &kernel_args,
CU_LAUNCH_PARAM_BUFFER_SIZE, &args_size,
CU_LAUNCH_PARAM_END};
if (print_resource_usage)
print_kernel_resources(binary, kernel_name);
// Initialize a non-blocking CUDA stream to allocate memory if needed.
// This needs to be done on a separate stream or else it will deadlock
// with the executing kernel.
CUstream memory_stream;
if (CUresult err = cuStreamCreate(&memory_stream, CU_STREAM_NON_BLOCKING))
handle_error(err);
std::atomic<bool> finished = false;
std::thread server_thread(
[](std::atomic<bool> *finished, rpc::Server *server,
CUstream memory_stream) {
auto malloc_handler = [&](size_t size) -> void * {
CUdeviceptr dev_ptr;
if (CUresult err = cuMemAllocAsync(&dev_ptr, size, memory_stream))
dev_ptr = 0UL;
// Wait until the memory allocation is complete.
while (cuStreamQuery(memory_stream) == CUDA_ERROR_NOT_READY)
;
return reinterpret_cast<void *>(dev_ptr);
};
auto free_handler = [&](void *ptr) -> void {
if (CUresult err = cuMemFreeAsync(reinterpret_cast<CUdeviceptr>(ptr),
memory_stream))
handle_error(err);
};
uint32_t index = 0;
while (!*finished) {
index =
handle_server<32>(*server, index, malloc_handler, free_handler);
}
},
&finished, &server, memory_stream);
// Call the kernel with the given arguments.
if (CUresult err = cuLaunchKernel(
function, params.num_blocks_x, params.num_blocks_y,
params.num_blocks_z, params.num_threads_x, params.num_threads_y,
params.num_threads_z, 0, stream, nullptr, args_config))
handle_error(err);
if (CUresult err = cuStreamSynchronize(stream))
handle_error(err);
finished = true;
if (server_thread.joinable())
server_thread.join();
return CUDA_SUCCESS;
}
int load(int argc, const char **argv, const char **envp, void *image,
size_t size, const LaunchParameters &params,
bool print_resource_usage) {
if (CUresult err = cuInit(0))
handle_error(err);
// Obtain the first device found on the system.
uint32_t device_id = 0;
CUdevice device;
if (CUresult err = cuDeviceGet(&device, device_id))
handle_error(err);
// Initialize the CUDA context and claim it for this execution.
CUcontext context;
if (CUresult err = cuDevicePrimaryCtxRetain(&context, device))
handle_error(err);
if (CUresult err = cuCtxSetCurrent(context))
handle_error(err);
// Increase the stack size per thread.
// TODO: We should allow this to be passed in so only the tests that require a
// larger stack can specify it to save on memory usage.
if (CUresult err = cuCtxSetLimit(CU_LIMIT_STACK_SIZE, 3 * 1024))
handle_error(err);
// Initialize a non-blocking CUDA stream to execute the kernel.
CUstream stream;
if (CUresult err = cuStreamCreate(&stream, CU_STREAM_NON_BLOCKING))
handle_error(err);
// Load the image into a CUDA module.
CUmodule binary;
if (CUresult err = cuModuleLoadDataEx(&binary, image, 0, nullptr, nullptr))
handle_error(err);
// Allocate pinned memory on the host to hold the pointer array for the
// copied argv and allow the GPU device to access it.
auto allocator = [&](uint64_t size) -> void * {
void *dev_ptr;
if (CUresult err = cuMemAllocHost(&dev_ptr, size))
handle_error(err);
return dev_ptr;
};
auto memory_or_err = get_ctor_dtor_array(image, size, allocator, binary);
if (!memory_or_err)
handle_error(toString(memory_or_err.takeError()).c_str());
void *dev_argv = copy_argument_vector(argc, argv, allocator);
if (!dev_argv)
handle_error("Failed to allocate device argv");
// Allocate pinned memory on the host to hold the pointer array for the
// copied environment array and allow the GPU device to access it.
void *dev_envp = copy_environment(envp, allocator);
if (!dev_envp)
handle_error("Failed to allocate device environment");
// Allocate space for the return pointer and initialize it to zero.
CUdeviceptr dev_ret;
if (CUresult err = cuMemAlloc(&dev_ret, sizeof(int)))
handle_error(err);
if (CUresult err = cuMemsetD32(dev_ret, 0, 1))
handle_error(err);
uint32_t warp_size = 32;
void *rpc_buffer = nullptr;
if (CUresult err = cuMemAllocHost(
&rpc_buffer,
rpc::Server::allocation_size(warp_size, rpc::MAX_PORT_COUNT)))
handle_error(err);
rpc::Server server(rpc::MAX_PORT_COUNT, rpc_buffer);
rpc::Client client(rpc::MAX_PORT_COUNT, rpc_buffer);
// Initialize the RPC client on the device by copying the local data to the
// device's internal pointer.
CUdeviceptr rpc_client_dev = 0;
uint64_t client_ptr_size = sizeof(void *);
if (CUresult err = cuModuleGetGlobal(&rpc_client_dev, &client_ptr_size,
binary, "__llvm_rpc_client"))
handle_error(err);
if (CUresult err = cuMemcpyHtoD(rpc_client_dev, &client, sizeof(rpc::Client)))
handle_error(err);
LaunchParameters single_threaded_params = {1, 1, 1, 1, 1, 1};
begin_args_t init_args = {argc, dev_argv, dev_envp};
if (CUresult err =
launch_kernel(binary, stream, server, single_threaded_params,
"_begin", init_args, print_resource_usage))
handle_error(err);
start_args_t args = {argc, dev_argv, dev_envp,
reinterpret_cast<void *>(dev_ret)};
if (CUresult err = launch_kernel(binary, stream, server, params, "_start",
args, print_resource_usage))
handle_error(err);
// Copy the return value back from the kernel and wait.
int host_ret = 0;
if (CUresult err = cuMemcpyDtoH(&host_ret, dev_ret, sizeof(int)))
handle_error(err);
if (CUresult err = cuStreamSynchronize(stream))
handle_error(err);
end_args_t fini_args = {host_ret};
if (CUresult err =
launch_kernel(binary, stream, server, single_threaded_params, "_end",
fini_args, print_resource_usage))
handle_error(err);
// Free the memory allocated for the device.
if (CUresult err = cuMemFreeHost(*memory_or_err))
handle_error(err);
if (CUresult err = cuMemFree(dev_ret))
handle_error(err);
if (CUresult err = cuMemFreeHost(dev_argv))
handle_error(err);
if (CUresult err = cuMemFreeHost(rpc_buffer))
handle_error(err);
// Destroy the context and the loaded binary.
if (CUresult err = cuModuleUnload(binary))
handle_error(err);
if (CUresult err = cuDevicePrimaryCtxRelease(device))
handle_error(err);
return host_ret;
}