Files
clang-p2996/mlir/lib/Dialect/SCF/IR/ValueBoundsOpInterfaceImpl.cpp
Max191 3da843bae1 [mlir] Add ValueBoundsOpInterfaceImpl for scf.forall (#118817)
Adds a ValueBoundsOpInterface implementation for scf.forall ops. The
implementation supports bounding for both induction variables, results,
and block args of the forall op. Induction variables are given upper and
lower bounds based on the lower and upper loop bounds, and dimensions of
the results and init block arguments are constrained to be equal to the
matching dims of the shared_outs operand.

Signed-off-by: Max Dawkins <maxdawkins19@gmail.com>
Co-authored-by: Max Dawkins <maxdawkins19@gmail.com>
2024-12-05 09:37:08 -08:00

209 lines
7.6 KiB
C++

//===- ValueBoundsOpInterfaceImpl.cpp - Impl. of ValueBoundsOpInterface ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/IR/ValueBoundsOpInterfaceImpl.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
using namespace mlir;
namespace mlir {
namespace scf {
namespace {
struct ForOpInterface
: public ValueBoundsOpInterface::ExternalModel<ForOpInterface, ForOp> {
/// Populate bounds of values/dimensions for iter_args/OpResults. If the
/// value/dimension size does not change in an iteration, we can deduce that
/// it the same as the initial value/dimension.
///
/// Example 1:
/// %0 = scf.for ... iter_args(%arg0 = %t) -> tensor<?xf32> {
/// ...
/// %1 = tensor.insert %f into %arg0[...] : tensor<?xf32>
/// scf.yield %1 : tensor<?xf32>
/// }
/// --> bound(%0)[0] == bound(%t)[0]
/// --> bound(%arg0)[0] == bound(%t)[0]
///
/// Example 2:
/// %0 = scf.for ... iter_args(%arg0 = %t) -> tensor<?xf32> {
/// %sz = tensor.dim %arg0 : tensor<?xf32>
/// %incr = arith.addi %sz, %c1 : index
/// %1 = tensor.empty(%incr) : tensor<?xf32>
/// scf.yield %1 : tensor<?xf32>
/// }
/// --> The yielded tensor dimension size changes with each iteration. Such
/// loops are not supported and no constraints are added.
static void populateIterArgBounds(scf::ForOp forOp, Value value,
std::optional<int64_t> dim,
ValueBoundsConstraintSet &cstr) {
// `value` is an iter_arg or an OpResult.
int64_t iterArgIdx;
if (auto iterArg = llvm::dyn_cast<BlockArgument>(value)) {
iterArgIdx = iterArg.getArgNumber() - forOp.getNumInductionVars();
} else {
iterArgIdx = llvm::cast<OpResult>(value).getResultNumber();
}
Value yieldedValue = cast<scf::YieldOp>(forOp.getBody()->getTerminator())
.getOperand(iterArgIdx);
Value iterArg = forOp.getRegionIterArg(iterArgIdx);
Value initArg = forOp.getInitArgs()[iterArgIdx];
// An EQ constraint can be added if the yielded value (dimension size)
// equals the corresponding block argument (dimension size).
if (cstr.populateAndCompare(
/*lhs=*/{yieldedValue, dim},
ValueBoundsConstraintSet::ComparisonOperator::EQ,
/*rhs=*/{iterArg, dim})) {
if (dim.has_value()) {
cstr.bound(value)[*dim] == cstr.getExpr(initArg, dim);
} else {
cstr.bound(value) == cstr.getExpr(initArg);
}
}
}
void populateBoundsForIndexValue(Operation *op, Value value,
ValueBoundsConstraintSet &cstr) const {
auto forOp = cast<ForOp>(op);
if (value == forOp.getInductionVar()) {
// TODO: Take into account step size.
cstr.bound(value) >= forOp.getLowerBound();
cstr.bound(value) < forOp.getUpperBound();
return;
}
// Handle iter_args and OpResults.
populateIterArgBounds(forOp, value, std::nullopt, cstr);
}
void populateBoundsForShapedValueDim(Operation *op, Value value, int64_t dim,
ValueBoundsConstraintSet &cstr) const {
auto forOp = cast<ForOp>(op);
// Handle iter_args and OpResults.
populateIterArgBounds(forOp, value, dim, cstr);
}
};
struct ForallOpInterface
: public ValueBoundsOpInterface::ExternalModel<ForallOpInterface,
ForallOp> {
void populateBoundsForIndexValue(Operation *op, Value value,
ValueBoundsConstraintSet &cstr) const {
auto forallOp = cast<ForallOp>(op);
// Index values should be induction variables, since the semantics of
// tensor::ParallelInsertSliceOp requires forall outputs to be ranked
// tensors.
auto blockArg = cast<BlockArgument>(value);
assert(blockArg.getArgNumber() < forallOp.getInductionVars().size() &&
"expected index value to be an induction var");
int64_t idx = blockArg.getArgNumber();
// TODO: Take into account step size.
AffineExpr lb = cstr.getExpr(forallOp.getMixedLowerBound()[idx]);
AffineExpr ub = cstr.getExpr(forallOp.getMixedUpperBound()[idx]);
cstr.bound(value) >= lb;
cstr.bound(value) < ub;
}
void populateBoundsForShapedValueDim(Operation *op, Value value, int64_t dim,
ValueBoundsConstraintSet &cstr) const {
auto forallOp = cast<ForallOp>(op);
// `value` is an iter_arg or an OpResult.
int64_t iterArgIdx;
if (auto iterArg = llvm::dyn_cast<BlockArgument>(value)) {
iterArgIdx = iterArg.getArgNumber() - forallOp.getInductionVars().size();
} else {
iterArgIdx = llvm::cast<OpResult>(value).getResultNumber();
}
// The forall results and output arguments have the same sizes as the output
// operands.
Value outputOperand = forallOp.getOutputs()[iterArgIdx];
cstr.bound(value)[dim] == cstr.getExpr(outputOperand, dim);
}
};
struct IfOpInterface
: public ValueBoundsOpInterface::ExternalModel<IfOpInterface, IfOp> {
static void populateBounds(scf::IfOp ifOp, Value value,
std::optional<int64_t> dim,
ValueBoundsConstraintSet &cstr) {
unsigned int resultNum = cast<OpResult>(value).getResultNumber();
Value thenValue = ifOp.thenYield().getResults()[resultNum];
Value elseValue = ifOp.elseYield().getResults()[resultNum];
auto boundsBuilder = cstr.bound(value);
if (dim)
boundsBuilder[*dim];
// Compare yielded values.
// If thenValue <= elseValue:
// * result <= elseValue
// * result >= thenValue
if (cstr.populateAndCompare(
/*lhs=*/{thenValue, dim},
ValueBoundsConstraintSet::ComparisonOperator::LE,
/*rhs=*/{elseValue, dim})) {
if (dim) {
cstr.bound(value)[*dim] >= cstr.getExpr(thenValue, dim);
cstr.bound(value)[*dim] <= cstr.getExpr(elseValue, dim);
} else {
cstr.bound(value) >= thenValue;
cstr.bound(value) <= elseValue;
}
}
// If elseValue <= thenValue:
// * result <= thenValue
// * result >= elseValue
if (cstr.populateAndCompare(
/*lhs=*/{elseValue, dim},
ValueBoundsConstraintSet::ComparisonOperator::LE,
/*rhs=*/{thenValue, dim})) {
if (dim) {
cstr.bound(value)[*dim] >= cstr.getExpr(elseValue, dim);
cstr.bound(value)[*dim] <= cstr.getExpr(thenValue, dim);
} else {
cstr.bound(value) >= elseValue;
cstr.bound(value) <= thenValue;
}
}
}
void populateBoundsForIndexValue(Operation *op, Value value,
ValueBoundsConstraintSet &cstr) const {
populateBounds(cast<IfOp>(op), value, /*dim=*/std::nullopt, cstr);
}
void populateBoundsForShapedValueDim(Operation *op, Value value, int64_t dim,
ValueBoundsConstraintSet &cstr) const {
populateBounds(cast<IfOp>(op), value, dim, cstr);
}
};
} // namespace
} // namespace scf
} // namespace mlir
void mlir::scf::registerValueBoundsOpInterfaceExternalModels(
DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, scf::SCFDialect *dialect) {
scf::ForOp::attachInterface<scf::ForOpInterface>(*ctx);
scf::ForallOp::attachInterface<scf::ForallOpInterface>(*ctx);
scf::IfOp::attachInterface<scf::IfOpInterface>(*ctx);
});
}