Files
clang-p2996/llvm/lib/Target/AMDGPU/Utils/AMDGPUMemoryUtils.cpp
Austin Kerbow 2db700215a [AMDGPU] Add llvm.amdgcn.sched.barrier intrinsic
Adds an intrinsic/builtin that can be used to fine tune scheduler behavior. If
there is a need to have highly optimized codegen and kernel developers have
knowledge of inter-wave runtime behavior which is unknown to the compiler this
builtin can be used to tune scheduling.

This intrinsic creates a barrier between scheduling regions. The immediate
parameter is a mask to determine the types of instructions that should be
prevented from crossing the sched_barrier. In this initial patch, there are only
two variations. A mask of 0 means that no instructions may be scheduled across
the sched_barrier. A mask of 1 means that non-memory, non-side-effect inducing
instructions may cross the sched_barrier.

Note that this intrinsic is only meant to work with the scheduling passes. Any
other transformations that may move code will not be impacted in the ways
described above.

Reviewed By: rampitec

Differential Revision: https://reviews.llvm.org/D124700
2022-05-11 13:22:51 -07:00

221 lines
6.9 KiB
C++

//===-- AMDGPUMemoryUtils.cpp - -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AMDGPUMemoryUtils.h"
#include "AMDGPU.h"
#include "AMDGPUBaseInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/ReplaceConstant.h"
#define DEBUG_TYPE "amdgpu-memory-utils"
using namespace llvm;
namespace llvm {
namespace AMDGPU {
Align getAlign(DataLayout const &DL, const GlobalVariable *GV) {
return DL.getValueOrABITypeAlignment(GV->getPointerAlignment(DL),
GV->getValueType());
}
static void collectFunctionUses(User *U, const Function *F,
SetVector<Instruction *> &InstUsers) {
SmallVector<User *> Stack{U};
while (!Stack.empty()) {
U = Stack.pop_back_val();
if (auto *I = dyn_cast<Instruction>(U)) {
if (I->getFunction() == F)
InstUsers.insert(I);
continue;
}
if (!isa<ConstantExpr>(U))
continue;
append_range(Stack, U->users());
}
}
void replaceConstantUsesInFunction(ConstantExpr *C, const Function *F) {
SetVector<Instruction *> InstUsers;
collectFunctionUses(C, F, InstUsers);
for (Instruction *I : InstUsers) {
convertConstantExprsToInstructions(I, C);
}
}
static bool shouldLowerLDSToStruct(const GlobalVariable &GV,
const Function *F) {
// We are not interested in kernel LDS lowering for module LDS itself.
if (F && GV.getName() == "llvm.amdgcn.module.lds")
return false;
bool Ret = false;
SmallPtrSet<const User *, 8> Visited;
SmallVector<const User *, 16> Stack(GV.users());
assert(!F || isKernelCC(F));
while (!Stack.empty()) {
const User *V = Stack.pop_back_val();
Visited.insert(V);
if (isa<GlobalValue>(V)) {
// This use of the LDS variable is the initializer of a global variable.
// This is ill formed. The address of an LDS variable is kernel dependent
// and unknown until runtime. It can't be written to a global variable.
continue;
}
if (auto *I = dyn_cast<Instruction>(V)) {
const Function *UF = I->getFunction();
if (UF == F) {
// Used from this kernel, we want to put it into the structure.
Ret = true;
} else if (!F) {
// For module LDS lowering, lowering is required if the user instruction
// is from non-kernel function.
Ret |= !isKernelCC(UF);
}
continue;
}
// User V should be a constant, recursively visit users of V.
assert(isa<Constant>(V) && "Expected a constant.");
append_range(Stack, V->users());
}
return Ret;
}
std::vector<GlobalVariable *> findVariablesToLower(Module &M,
const Function *F) {
std::vector<llvm::GlobalVariable *> LocalVars;
for (auto &GV : M.globals()) {
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
continue;
}
if (!GV.hasInitializer()) {
// addrspace(3) without initializer implies cuda/hip extern __shared__
// the semantics for such a variable appears to be that all extern
// __shared__ variables alias one another, in which case this transform
// is not required
continue;
}
if (!isa<UndefValue>(GV.getInitializer())) {
// Initializers are unimplemented for LDS address space.
// Leave such variables in place for consistent error reporting.
continue;
}
if (GV.isConstant()) {
// A constant undef variable can't be written to, and any load is
// undef, so it should be eliminated by the optimizer. It could be
// dropped by the back end if not. This pass skips over it.
continue;
}
if (!shouldLowerLDSToStruct(GV, F)) {
continue;
}
LocalVars.push_back(&GV);
}
return LocalVars;
}
bool isReallyAClobber(const Value *Ptr, MemoryDef *Def, AAResults *AA) {
Instruction *DefInst = Def->getMemoryInst();
if (isa<FenceInst>(DefInst))
return false;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
switch (II->getIntrinsicID()) {
case Intrinsic::amdgcn_s_barrier:
case Intrinsic::amdgcn_wave_barrier:
case Intrinsic::amdgcn_sched_barrier:
return false;
default:
break;
}
}
// Ignore atomics not aliasing with the original load, any atomic is a
// universal MemoryDef from MSSA's point of view too, just like a fence.
const auto checkNoAlias = [AA, Ptr](auto I) -> bool {
return I && AA->isNoAlias(I->getPointerOperand(), Ptr);
};
if (checkNoAlias(dyn_cast<AtomicCmpXchgInst>(DefInst)) ||
checkNoAlias(dyn_cast<AtomicRMWInst>(DefInst)))
return false;
return true;
}
bool isClobberedInFunction(const LoadInst *Load, MemorySSA *MSSA,
AAResults *AA) {
MemorySSAWalker *Walker = MSSA->getWalker();
SmallVector<MemoryAccess *> WorkList{Walker->getClobberingMemoryAccess(Load)};
SmallSet<MemoryAccess *, 8> Visited;
MemoryLocation Loc(MemoryLocation::get(Load));
LLVM_DEBUG(dbgs() << "Checking clobbering of: " << *Load << '\n');
// Start with a nearest dominating clobbering access, it will be either
// live on entry (nothing to do, load is not clobbered), MemoryDef, or
// MemoryPhi if several MemoryDefs can define this memory state. In that
// case add all Defs to WorkList and continue going up and checking all
// the definitions of this memory location until the root. When all the
// defs are exhausted and came to the entry state we have no clobber.
// Along the scan ignore barriers and fences which are considered clobbers
// by the MemorySSA, but not really writing anything into the memory.
while (!WorkList.empty()) {
MemoryAccess *MA = WorkList.pop_back_val();
if (!Visited.insert(MA).second)
continue;
if (MSSA->isLiveOnEntryDef(MA))
continue;
if (MemoryDef *Def = dyn_cast<MemoryDef>(MA)) {
LLVM_DEBUG(dbgs() << " Def: " << *Def->getMemoryInst() << '\n');
if (isReallyAClobber(Load->getPointerOperand(), Def, AA)) {
LLVM_DEBUG(dbgs() << " -> load is clobbered\n");
return true;
}
WorkList.push_back(
Walker->getClobberingMemoryAccess(Def->getDefiningAccess(), Loc));
continue;
}
const MemoryPhi *Phi = cast<MemoryPhi>(MA);
for (auto &Use : Phi->incoming_values())
WorkList.push_back(cast<MemoryAccess>(&Use));
}
LLVM_DEBUG(dbgs() << " -> no clobber\n");
return false;
}
} // end namespace AMDGPU
} // end namespace llvm