The current implementation uses a discrete "pdl_interp.inferred_types" operation, which acts as a "fake" handle to a type range. This op is used as a signal to pdl_interp.create_operation that types should be inferred. This is terribly awkward and clunky though: * This op doesn't have a byte code representation, and its conversion to bytecode kind of assumes that it is only used in a certain way. The current lowering is also broken and seemingly untested. * Given that this is a different operation, it gives off the assumption that it can be used multiple times, or that after the first use the value contains the inferred types. This isn't the case though, the resultant type range can never actually be used as a type range. This commit refactors the representation by removing the discrete InferredTypesOp, and instead adds a UnitAttr to pdl_interp.CreateOperation that signals when the created operations should infer their types. This leads to a much much cleaner abstraction, a more optimal bytecode lowering, and also allows for better error handling and diagnostics when a created operation doesn't actually support type inferrence. Differential Revision: https://reviews.llvm.org/D124587
949 lines
38 KiB
C++
949 lines
38 KiB
C++
//===- PDLToPDLInterp.cpp - Lower a PDL module to the interpreter ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/PDLToPDLInterp/PDLToPDLInterp.h"
|
|
#include "../PassDetail.h"
|
|
#include "PredicateTree.h"
|
|
#include "mlir/Dialect/PDL/IR/PDL.h"
|
|
#include "mlir/Dialect/PDL/IR/PDLTypes.h"
|
|
#include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/ScopedHashTable.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::pdl_to_pdl_interp;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PatternLowering
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class generators operations within the PDL Interpreter dialect from a
|
|
/// given module containing PDL pattern operations.
|
|
struct PatternLowering {
|
|
public:
|
|
PatternLowering(pdl_interp::FuncOp matcherFunc, ModuleOp rewriterModule);
|
|
|
|
/// Generate code for matching and rewriting based on the pattern operations
|
|
/// within the module.
|
|
void lower(ModuleOp module);
|
|
|
|
private:
|
|
using ValueMap = llvm::ScopedHashTable<Position *, Value>;
|
|
using ValueMapScope = llvm::ScopedHashTableScope<Position *, Value>;
|
|
|
|
/// Generate interpreter operations for the tree rooted at the given matcher
|
|
/// node, in the specified region.
|
|
Block *generateMatcher(MatcherNode &node, Region ®ion);
|
|
|
|
/// Get or create an access to the provided positional value in the current
|
|
/// block. This operation may mutate the provided block pointer if nested
|
|
/// regions (i.e., pdl_interp.iterate) are required.
|
|
Value getValueAt(Block *¤tBlock, Position *pos);
|
|
|
|
/// Create the interpreter predicate operations. This operation may mutate the
|
|
/// provided current block pointer if nested regions (iterates) are required.
|
|
void generate(BoolNode *boolNode, Block *¤tBlock, Value val);
|
|
|
|
/// Create the interpreter switch / predicate operations, with several case
|
|
/// destinations. This operation never mutates the provided current block
|
|
/// pointer, because the switch operation does not need Values beyond `val`.
|
|
void generate(SwitchNode *switchNode, Block *currentBlock, Value val);
|
|
|
|
/// Create the interpreter operations to record a successful pattern match
|
|
/// using the contained root operation. This operation may mutate the current
|
|
/// block pointer if nested regions (i.e., pdl_interp.iterate) are required.
|
|
void generate(SuccessNode *successNode, Block *¤tBlock);
|
|
|
|
/// Generate a rewriter function for the given pattern operation, and returns
|
|
/// a reference to that function.
|
|
SymbolRefAttr generateRewriter(pdl::PatternOp pattern,
|
|
SmallVectorImpl<Position *> &usedMatchValues);
|
|
|
|
/// Generate the rewriter code for the given operation.
|
|
void generateRewriter(pdl::ApplyNativeRewriteOp rewriteOp,
|
|
DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue);
|
|
void generateRewriter(pdl::AttributeOp attrOp,
|
|
DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue);
|
|
void generateRewriter(pdl::EraseOp eraseOp,
|
|
DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue);
|
|
void generateRewriter(pdl::OperationOp operationOp,
|
|
DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue);
|
|
void generateRewriter(pdl::ReplaceOp replaceOp,
|
|
DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue);
|
|
void generateRewriter(pdl::ResultOp resultOp,
|
|
DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue);
|
|
void generateRewriter(pdl::ResultsOp resultOp,
|
|
DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue);
|
|
void generateRewriter(pdl::TypeOp typeOp,
|
|
DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue);
|
|
void generateRewriter(pdl::TypesOp typeOp,
|
|
DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue);
|
|
|
|
/// Generate the values used for resolving the result types of an operation
|
|
/// created within a dag rewriter region. If the result types of the operation
|
|
/// should be inferred, `hasInferredResultTypes` is set to true.
|
|
void generateOperationResultTypeRewriter(
|
|
pdl::OperationOp op, function_ref<Value(Value)> mapRewriteValue,
|
|
SmallVectorImpl<Value> &types, DenseMap<Value, Value> &rewriteValues,
|
|
bool &hasInferredResultTypes);
|
|
|
|
/// A builder to use when generating interpreter operations.
|
|
OpBuilder builder;
|
|
|
|
/// The matcher function used for all match related logic within PDL patterns.
|
|
pdl_interp::FuncOp matcherFunc;
|
|
|
|
/// The rewriter module containing the all rewrite related logic within PDL
|
|
/// patterns.
|
|
ModuleOp rewriterModule;
|
|
|
|
/// The symbol table of the rewriter module used for insertion.
|
|
SymbolTable rewriterSymbolTable;
|
|
|
|
/// A scoped map connecting a position with the corresponding interpreter
|
|
/// value.
|
|
ValueMap values;
|
|
|
|
/// A stack of blocks used as the failure destination for matcher nodes that
|
|
/// don't have an explicit failure path.
|
|
SmallVector<Block *, 8> failureBlockStack;
|
|
|
|
/// A mapping between values defined in a pattern match, and the corresponding
|
|
/// positional value.
|
|
DenseMap<Value, Position *> valueToPosition;
|
|
|
|
/// The set of operation values whose whose location will be used for newly
|
|
/// generated operations.
|
|
SetVector<Value> locOps;
|
|
};
|
|
} // namespace
|
|
|
|
PatternLowering::PatternLowering(pdl_interp::FuncOp matcherFunc,
|
|
ModuleOp rewriterModule)
|
|
: builder(matcherFunc.getContext()), matcherFunc(matcherFunc),
|
|
rewriterModule(rewriterModule), rewriterSymbolTable(rewriterModule) {}
|
|
|
|
void PatternLowering::lower(ModuleOp module) {
|
|
PredicateUniquer predicateUniquer;
|
|
PredicateBuilder predicateBuilder(predicateUniquer, module.getContext());
|
|
|
|
// Define top-level scope for the arguments to the matcher function.
|
|
ValueMapScope topLevelValueScope(values);
|
|
|
|
// Insert the root operation, i.e. argument to the matcher, at the root
|
|
// position.
|
|
Block *matcherEntryBlock = &matcherFunc.front();
|
|
values.insert(predicateBuilder.getRoot(), matcherEntryBlock->getArgument(0));
|
|
|
|
// Generate a root matcher node from the provided PDL module.
|
|
std::unique_ptr<MatcherNode> root = MatcherNode::generateMatcherTree(
|
|
module, predicateBuilder, valueToPosition);
|
|
Block *firstMatcherBlock = generateMatcher(*root, matcherFunc.getBody());
|
|
assert(failureBlockStack.empty() && "failed to empty the stack");
|
|
|
|
// After generation, merged the first matched block into the entry.
|
|
matcherEntryBlock->getOperations().splice(matcherEntryBlock->end(),
|
|
firstMatcherBlock->getOperations());
|
|
firstMatcherBlock->erase();
|
|
}
|
|
|
|
Block *PatternLowering::generateMatcher(MatcherNode &node, Region ®ion) {
|
|
// Push a new scope for the values used by this matcher.
|
|
Block *block = ®ion.emplaceBlock();
|
|
ValueMapScope scope(values);
|
|
|
|
// If this is the return node, simply insert the corresponding interpreter
|
|
// finalize.
|
|
if (isa<ExitNode>(node)) {
|
|
builder.setInsertionPointToEnd(block);
|
|
builder.create<pdl_interp::FinalizeOp>(matcherFunc.getLoc());
|
|
return block;
|
|
}
|
|
|
|
// Get the next block in the match sequence.
|
|
// This is intentionally executed first, before we get the value for the
|
|
// position associated with the node, so that we preserve an "there exist"
|
|
// semantics: if getting a value requires an upward traversal (going from a
|
|
// value to its consumers), we want to perform the check on all the consumers
|
|
// before we pass control to the failure node.
|
|
std::unique_ptr<MatcherNode> &failureNode = node.getFailureNode();
|
|
Block *failureBlock;
|
|
if (failureNode) {
|
|
failureBlock = generateMatcher(*failureNode, region);
|
|
failureBlockStack.push_back(failureBlock);
|
|
} else {
|
|
assert(!failureBlockStack.empty() && "expected valid failure block");
|
|
failureBlock = failureBlockStack.back();
|
|
}
|
|
|
|
// If this node contains a position, get the corresponding value for this
|
|
// block.
|
|
Block *currentBlock = block;
|
|
Position *position = node.getPosition();
|
|
Value val = position ? getValueAt(currentBlock, position) : Value();
|
|
|
|
// If this value corresponds to an operation, record that we are going to use
|
|
// its location as part of a fused location.
|
|
bool isOperationValue = val && val.getType().isa<pdl::OperationType>();
|
|
if (isOperationValue)
|
|
locOps.insert(val);
|
|
|
|
// Dispatch to the correct method based on derived node type.
|
|
TypeSwitch<MatcherNode *>(&node)
|
|
.Case<BoolNode, SwitchNode>([&](auto *derivedNode) {
|
|
this->generate(derivedNode, currentBlock, val);
|
|
})
|
|
.Case([&](SuccessNode *successNode) {
|
|
generate(successNode, currentBlock);
|
|
});
|
|
|
|
// Pop all the failure blocks that were inserted due to nesting of
|
|
// pdl_interp.iterate.
|
|
while (failureBlockStack.back() != failureBlock) {
|
|
failureBlockStack.pop_back();
|
|
assert(!failureBlockStack.empty() && "unable to locate failure block");
|
|
}
|
|
|
|
// Pop the new failure block.
|
|
if (failureNode)
|
|
failureBlockStack.pop_back();
|
|
|
|
if (isOperationValue)
|
|
locOps.remove(val);
|
|
|
|
return block;
|
|
}
|
|
|
|
Value PatternLowering::getValueAt(Block *¤tBlock, Position *pos) {
|
|
if (Value val = values.lookup(pos))
|
|
return val;
|
|
|
|
// Get the value for the parent position.
|
|
Value parentVal;
|
|
if (Position *parent = pos->getParent())
|
|
parentVal = getValueAt(currentBlock, parent);
|
|
|
|
// TODO: Use a location from the position.
|
|
Location loc = parentVal ? parentVal.getLoc() : builder.getUnknownLoc();
|
|
builder.setInsertionPointToEnd(currentBlock);
|
|
Value value;
|
|
switch (pos->getKind()) {
|
|
case Predicates::OperationPos: {
|
|
auto *operationPos = cast<OperationPosition>(pos);
|
|
if (operationPos->isOperandDefiningOp())
|
|
// Standard (downward) traversal which directly follows the defining op.
|
|
value = builder.create<pdl_interp::GetDefiningOpOp>(
|
|
loc, builder.getType<pdl::OperationType>(), parentVal);
|
|
else
|
|
// A passthrough operation position.
|
|
value = parentVal;
|
|
break;
|
|
}
|
|
case Predicates::UsersPos: {
|
|
auto *usersPos = cast<UsersPosition>(pos);
|
|
|
|
// The first operation retrieves the representative value of a range.
|
|
// This applies only when the parent is a range of values and we were
|
|
// requested to use a representative value (e.g., upward traversal).
|
|
if (parentVal.getType().isa<pdl::RangeType>() &&
|
|
usersPos->useRepresentative())
|
|
value = builder.create<pdl_interp::ExtractOp>(loc, parentVal, 0);
|
|
else
|
|
value = parentVal;
|
|
|
|
// The second operation retrieves the users.
|
|
value = builder.create<pdl_interp::GetUsersOp>(loc, value);
|
|
break;
|
|
}
|
|
case Predicates::ForEachPos: {
|
|
assert(!failureBlockStack.empty() && "expected valid failure block");
|
|
auto foreach = builder.create<pdl_interp::ForEachOp>(
|
|
loc, parentVal, failureBlockStack.back(), /*initLoop=*/true);
|
|
value = foreach.getLoopVariable();
|
|
|
|
// Create the continuation block.
|
|
Block *continueBlock = builder.createBlock(&foreach.getRegion());
|
|
builder.create<pdl_interp::ContinueOp>(loc);
|
|
failureBlockStack.push_back(continueBlock);
|
|
|
|
currentBlock = &foreach.getRegion().front();
|
|
break;
|
|
}
|
|
case Predicates::OperandPos: {
|
|
auto *operandPos = cast<OperandPosition>(pos);
|
|
value = builder.create<pdl_interp::GetOperandOp>(
|
|
loc, builder.getType<pdl::ValueType>(), parentVal,
|
|
operandPos->getOperandNumber());
|
|
break;
|
|
}
|
|
case Predicates::OperandGroupPos: {
|
|
auto *operandPos = cast<OperandGroupPosition>(pos);
|
|
Type valueTy = builder.getType<pdl::ValueType>();
|
|
value = builder.create<pdl_interp::GetOperandsOp>(
|
|
loc, operandPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy,
|
|
parentVal, operandPos->getOperandGroupNumber());
|
|
break;
|
|
}
|
|
case Predicates::AttributePos: {
|
|
auto *attrPos = cast<AttributePosition>(pos);
|
|
value = builder.create<pdl_interp::GetAttributeOp>(
|
|
loc, builder.getType<pdl::AttributeType>(), parentVal,
|
|
attrPos->getName().strref());
|
|
break;
|
|
}
|
|
case Predicates::TypePos: {
|
|
if (parentVal.getType().isa<pdl::AttributeType>())
|
|
value = builder.create<pdl_interp::GetAttributeTypeOp>(loc, parentVal);
|
|
else
|
|
value = builder.create<pdl_interp::GetValueTypeOp>(loc, parentVal);
|
|
break;
|
|
}
|
|
case Predicates::ResultPos: {
|
|
auto *resPos = cast<ResultPosition>(pos);
|
|
value = builder.create<pdl_interp::GetResultOp>(
|
|
loc, builder.getType<pdl::ValueType>(), parentVal,
|
|
resPos->getResultNumber());
|
|
break;
|
|
}
|
|
case Predicates::ResultGroupPos: {
|
|
auto *resPos = cast<ResultGroupPosition>(pos);
|
|
Type valueTy = builder.getType<pdl::ValueType>();
|
|
value = builder.create<pdl_interp::GetResultsOp>(
|
|
loc, resPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy,
|
|
parentVal, resPos->getResultGroupNumber());
|
|
break;
|
|
}
|
|
case Predicates::AttributeLiteralPos: {
|
|
auto *attrPos = cast<AttributeLiteralPosition>(pos);
|
|
value =
|
|
builder.create<pdl_interp::CreateAttributeOp>(loc, attrPos->getValue());
|
|
break;
|
|
}
|
|
case Predicates::TypeLiteralPos: {
|
|
auto *typePos = cast<TypeLiteralPosition>(pos);
|
|
Attribute rawTypeAttr = typePos->getValue();
|
|
if (TypeAttr typeAttr = rawTypeAttr.dyn_cast<TypeAttr>())
|
|
value = builder.create<pdl_interp::CreateTypeOp>(loc, typeAttr);
|
|
else
|
|
value = builder.create<pdl_interp::CreateTypesOp>(
|
|
loc, rawTypeAttr.cast<ArrayAttr>());
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Generating unknown Position getter");
|
|
break;
|
|
}
|
|
|
|
values.insert(pos, value);
|
|
return value;
|
|
}
|
|
|
|
void PatternLowering::generate(BoolNode *boolNode, Block *¤tBlock,
|
|
Value val) {
|
|
Location loc = val.getLoc();
|
|
Qualifier *question = boolNode->getQuestion();
|
|
Qualifier *answer = boolNode->getAnswer();
|
|
Region *region = currentBlock->getParent();
|
|
|
|
// Execute the getValue queries first, so that we create success
|
|
// matcher in the correct (possibly nested) region.
|
|
SmallVector<Value> args;
|
|
if (auto *equalToQuestion = dyn_cast<EqualToQuestion>(question)) {
|
|
args = {getValueAt(currentBlock, equalToQuestion->getValue())};
|
|
} else if (auto *cstQuestion = dyn_cast<ConstraintQuestion>(question)) {
|
|
for (Position *position : cstQuestion->getArgs())
|
|
args.push_back(getValueAt(currentBlock, position));
|
|
}
|
|
|
|
// Generate the matcher in the current (potentially nested) region
|
|
// and get the failure successor.
|
|
Block *success = generateMatcher(*boolNode->getSuccessNode(), *region);
|
|
Block *failure = failureBlockStack.back();
|
|
|
|
// Finally, create the predicate.
|
|
builder.setInsertionPointToEnd(currentBlock);
|
|
Predicates::Kind kind = question->getKind();
|
|
switch (kind) {
|
|
case Predicates::IsNotNullQuestion:
|
|
builder.create<pdl_interp::IsNotNullOp>(loc, val, success, failure);
|
|
break;
|
|
case Predicates::OperationNameQuestion: {
|
|
auto *opNameAnswer = cast<OperationNameAnswer>(answer);
|
|
builder.create<pdl_interp::CheckOperationNameOp>(
|
|
loc, val, opNameAnswer->getValue().getStringRef(), success, failure);
|
|
break;
|
|
}
|
|
case Predicates::TypeQuestion: {
|
|
auto *ans = cast<TypeAnswer>(answer);
|
|
if (val.getType().isa<pdl::RangeType>())
|
|
builder.create<pdl_interp::CheckTypesOp>(
|
|
loc, val, ans->getValue().cast<ArrayAttr>(), success, failure);
|
|
else
|
|
builder.create<pdl_interp::CheckTypeOp>(
|
|
loc, val, ans->getValue().cast<TypeAttr>(), success, failure);
|
|
break;
|
|
}
|
|
case Predicates::AttributeQuestion: {
|
|
auto *ans = cast<AttributeAnswer>(answer);
|
|
builder.create<pdl_interp::CheckAttributeOp>(loc, val, ans->getValue(),
|
|
success, failure);
|
|
break;
|
|
}
|
|
case Predicates::OperandCountAtLeastQuestion:
|
|
case Predicates::OperandCountQuestion:
|
|
builder.create<pdl_interp::CheckOperandCountOp>(
|
|
loc, val, cast<UnsignedAnswer>(answer)->getValue(),
|
|
/*compareAtLeast=*/kind == Predicates::OperandCountAtLeastQuestion,
|
|
success, failure);
|
|
break;
|
|
case Predicates::ResultCountAtLeastQuestion:
|
|
case Predicates::ResultCountQuestion:
|
|
builder.create<pdl_interp::CheckResultCountOp>(
|
|
loc, val, cast<UnsignedAnswer>(answer)->getValue(),
|
|
/*compareAtLeast=*/kind == Predicates::ResultCountAtLeastQuestion,
|
|
success, failure);
|
|
break;
|
|
case Predicates::EqualToQuestion: {
|
|
bool trueAnswer = isa<TrueAnswer>(answer);
|
|
builder.create<pdl_interp::AreEqualOp>(loc, val, args.front(),
|
|
trueAnswer ? success : failure,
|
|
trueAnswer ? failure : success);
|
|
break;
|
|
}
|
|
case Predicates::ConstraintQuestion: {
|
|
auto *cstQuestion = cast<ConstraintQuestion>(question);
|
|
builder.create<pdl_interp::ApplyConstraintOp>(loc, cstQuestion->getName(),
|
|
args, success, failure);
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Generating unknown Predicate operation");
|
|
}
|
|
}
|
|
|
|
template <typename OpT, typename PredT, typename ValT = typename PredT::KeyTy>
|
|
static void createSwitchOp(Value val, Block *defaultDest, OpBuilder &builder,
|
|
llvm::MapVector<Qualifier *, Block *> &dests) {
|
|
std::vector<ValT> values;
|
|
std::vector<Block *> blocks;
|
|
values.reserve(dests.size());
|
|
blocks.reserve(dests.size());
|
|
for (const auto &it : dests) {
|
|
blocks.push_back(it.second);
|
|
values.push_back(cast<PredT>(it.first)->getValue());
|
|
}
|
|
builder.create<OpT>(val.getLoc(), val, values, defaultDest, blocks);
|
|
}
|
|
|
|
void PatternLowering::generate(SwitchNode *switchNode, Block *currentBlock,
|
|
Value val) {
|
|
Qualifier *question = switchNode->getQuestion();
|
|
Region *region = currentBlock->getParent();
|
|
Block *defaultDest = failureBlockStack.back();
|
|
|
|
// If the switch question is not an exact answer, i.e. for the `at_least`
|
|
// cases, we generate a special block sequence.
|
|
Predicates::Kind kind = question->getKind();
|
|
if (kind == Predicates::OperandCountAtLeastQuestion ||
|
|
kind == Predicates::ResultCountAtLeastQuestion) {
|
|
// Order the children such that the cases are in reverse numerical order.
|
|
SmallVector<unsigned> sortedChildren = llvm::to_vector<16>(
|
|
llvm::seq<unsigned>(0, switchNode->getChildren().size()));
|
|
llvm::sort(sortedChildren, [&](unsigned lhs, unsigned rhs) {
|
|
return cast<UnsignedAnswer>(switchNode->getChild(lhs).first)->getValue() >
|
|
cast<UnsignedAnswer>(switchNode->getChild(rhs).first)->getValue();
|
|
});
|
|
|
|
// Build the destination for each child using the next highest child as a
|
|
// a failure destination. This essentially creates the following control
|
|
// flow:
|
|
//
|
|
// if (operand_count < 1)
|
|
// goto failure
|
|
// if (child1.match())
|
|
// ...
|
|
//
|
|
// if (operand_count < 2)
|
|
// goto failure
|
|
// if (child2.match())
|
|
// ...
|
|
//
|
|
// failure:
|
|
// ...
|
|
//
|
|
failureBlockStack.push_back(defaultDest);
|
|
Location loc = val.getLoc();
|
|
for (unsigned idx : sortedChildren) {
|
|
auto &child = switchNode->getChild(idx);
|
|
Block *childBlock = generateMatcher(*child.second, *region);
|
|
Block *predicateBlock = builder.createBlock(childBlock);
|
|
builder.setInsertionPointToEnd(predicateBlock);
|
|
unsigned ans = cast<UnsignedAnswer>(child.first)->getValue();
|
|
switch (kind) {
|
|
case Predicates::OperandCountAtLeastQuestion:
|
|
builder.create<pdl_interp::CheckOperandCountOp>(
|
|
loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest);
|
|
break;
|
|
case Predicates::ResultCountAtLeastQuestion:
|
|
builder.create<pdl_interp::CheckResultCountOp>(
|
|
loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Generating invalid AtLeast operation");
|
|
}
|
|
failureBlockStack.back() = predicateBlock;
|
|
}
|
|
Block *firstPredicateBlock = failureBlockStack.pop_back_val();
|
|
currentBlock->getOperations().splice(currentBlock->end(),
|
|
firstPredicateBlock->getOperations());
|
|
firstPredicateBlock->erase();
|
|
return;
|
|
}
|
|
|
|
// Otherwise, generate each of the children and generate an interpreter
|
|
// switch.
|
|
llvm::MapVector<Qualifier *, Block *> children;
|
|
for (auto &it : switchNode->getChildren())
|
|
children.insert({it.first, generateMatcher(*it.second, *region)});
|
|
builder.setInsertionPointToEnd(currentBlock);
|
|
|
|
switch (question->getKind()) {
|
|
case Predicates::OperandCountQuestion:
|
|
return createSwitchOp<pdl_interp::SwitchOperandCountOp, UnsignedAnswer,
|
|
int32_t>(val, defaultDest, builder, children);
|
|
case Predicates::ResultCountQuestion:
|
|
return createSwitchOp<pdl_interp::SwitchResultCountOp, UnsignedAnswer,
|
|
int32_t>(val, defaultDest, builder, children);
|
|
case Predicates::OperationNameQuestion:
|
|
return createSwitchOp<pdl_interp::SwitchOperationNameOp,
|
|
OperationNameAnswer>(val, defaultDest, builder,
|
|
children);
|
|
case Predicates::TypeQuestion:
|
|
if (val.getType().isa<pdl::RangeType>()) {
|
|
return createSwitchOp<pdl_interp::SwitchTypesOp, TypeAnswer>(
|
|
val, defaultDest, builder, children);
|
|
}
|
|
return createSwitchOp<pdl_interp::SwitchTypeOp, TypeAnswer>(
|
|
val, defaultDest, builder, children);
|
|
case Predicates::AttributeQuestion:
|
|
return createSwitchOp<pdl_interp::SwitchAttributeOp, AttributeAnswer>(
|
|
val, defaultDest, builder, children);
|
|
default:
|
|
llvm_unreachable("Generating unknown switch predicate.");
|
|
}
|
|
}
|
|
|
|
void PatternLowering::generate(SuccessNode *successNode, Block *¤tBlock) {
|
|
pdl::PatternOp pattern = successNode->getPattern();
|
|
Value root = successNode->getRoot();
|
|
|
|
// Generate a rewriter for the pattern this success node represents, and track
|
|
// any values used from the match region.
|
|
SmallVector<Position *, 8> usedMatchValues;
|
|
SymbolRefAttr rewriterFuncRef = generateRewriter(pattern, usedMatchValues);
|
|
|
|
// Process any values used in the rewrite that are defined in the match.
|
|
std::vector<Value> mappedMatchValues;
|
|
mappedMatchValues.reserve(usedMatchValues.size());
|
|
for (Position *position : usedMatchValues)
|
|
mappedMatchValues.push_back(getValueAt(currentBlock, position));
|
|
|
|
// Collect the set of operations generated by the rewriter.
|
|
SmallVector<StringRef, 4> generatedOps;
|
|
for (auto op : pattern.getRewriter().body().getOps<pdl::OperationOp>())
|
|
generatedOps.push_back(*op.name());
|
|
ArrayAttr generatedOpsAttr;
|
|
if (!generatedOps.empty())
|
|
generatedOpsAttr = builder.getStrArrayAttr(generatedOps);
|
|
|
|
// Grab the root kind if present.
|
|
StringAttr rootKindAttr;
|
|
if (pdl::OperationOp rootOp = root.getDefiningOp<pdl::OperationOp>())
|
|
if (Optional<StringRef> rootKind = rootOp.name())
|
|
rootKindAttr = builder.getStringAttr(*rootKind);
|
|
|
|
builder.setInsertionPointToEnd(currentBlock);
|
|
builder.create<pdl_interp::RecordMatchOp>(
|
|
pattern.getLoc(), mappedMatchValues, locOps.getArrayRef(),
|
|
rewriterFuncRef, rootKindAttr, generatedOpsAttr, pattern.benefitAttr(),
|
|
failureBlockStack.back());
|
|
}
|
|
|
|
SymbolRefAttr PatternLowering::generateRewriter(
|
|
pdl::PatternOp pattern, SmallVectorImpl<Position *> &usedMatchValues) {
|
|
builder.setInsertionPointToEnd(rewriterModule.getBody());
|
|
auto rewriterFunc = builder.create<pdl_interp::FuncOp>(
|
|
pattern.getLoc(), "pdl_generated_rewriter",
|
|
builder.getFunctionType(llvm::None, llvm::None));
|
|
rewriterSymbolTable.insert(rewriterFunc);
|
|
|
|
// Generate the rewriter function body.
|
|
builder.setInsertionPointToEnd(&rewriterFunc.front());
|
|
|
|
// Map an input operand of the pattern to a generated interpreter value.
|
|
DenseMap<Value, Value> rewriteValues;
|
|
auto mapRewriteValue = [&](Value oldValue) {
|
|
Value &newValue = rewriteValues[oldValue];
|
|
if (newValue)
|
|
return newValue;
|
|
|
|
// Prefer materializing constants directly when possible.
|
|
Operation *oldOp = oldValue.getDefiningOp();
|
|
if (pdl::AttributeOp attrOp = dyn_cast<pdl::AttributeOp>(oldOp)) {
|
|
if (Attribute value = attrOp.valueAttr()) {
|
|
return newValue = builder.create<pdl_interp::CreateAttributeOp>(
|
|
attrOp.getLoc(), value);
|
|
}
|
|
} else if (pdl::TypeOp typeOp = dyn_cast<pdl::TypeOp>(oldOp)) {
|
|
if (TypeAttr type = typeOp.typeAttr()) {
|
|
return newValue = builder.create<pdl_interp::CreateTypeOp>(
|
|
typeOp.getLoc(), type);
|
|
}
|
|
} else if (pdl::TypesOp typeOp = dyn_cast<pdl::TypesOp>(oldOp)) {
|
|
if (ArrayAttr type = typeOp.typesAttr()) {
|
|
return newValue = builder.create<pdl_interp::CreateTypesOp>(
|
|
typeOp.getLoc(), typeOp.getType(), type);
|
|
}
|
|
}
|
|
|
|
// Otherwise, add this as an input to the rewriter.
|
|
Position *inputPos = valueToPosition.lookup(oldValue);
|
|
assert(inputPos && "expected value to be a pattern input");
|
|
usedMatchValues.push_back(inputPos);
|
|
return newValue = rewriterFunc.front().addArgument(oldValue.getType(),
|
|
oldValue.getLoc());
|
|
};
|
|
|
|
// If this is a custom rewriter, simply dispatch to the registered rewrite
|
|
// method.
|
|
pdl::RewriteOp rewriter = pattern.getRewriter();
|
|
if (StringAttr rewriteName = rewriter.nameAttr()) {
|
|
SmallVector<Value> args;
|
|
if (rewriter.root())
|
|
args.push_back(mapRewriteValue(rewriter.root()));
|
|
auto mappedArgs = llvm::map_range(rewriter.externalArgs(), mapRewriteValue);
|
|
args.append(mappedArgs.begin(), mappedArgs.end());
|
|
builder.create<pdl_interp::ApplyRewriteOp>(
|
|
rewriter.getLoc(), /*resultTypes=*/TypeRange(), rewriteName, args);
|
|
} else {
|
|
// Otherwise this is a dag rewriter defined using PDL operations.
|
|
for (Operation &rewriteOp : *rewriter.getBody()) {
|
|
llvm::TypeSwitch<Operation *>(&rewriteOp)
|
|
.Case<pdl::ApplyNativeRewriteOp, pdl::AttributeOp, pdl::EraseOp,
|
|
pdl::OperationOp, pdl::ReplaceOp, pdl::ResultOp, pdl::ResultsOp,
|
|
pdl::TypeOp, pdl::TypesOp>([&](auto op) {
|
|
this->generateRewriter(op, rewriteValues, mapRewriteValue);
|
|
});
|
|
}
|
|
}
|
|
|
|
// Update the signature of the rewrite function.
|
|
rewriterFunc.setType(builder.getFunctionType(
|
|
llvm::to_vector<8>(rewriterFunc.front().getArgumentTypes()),
|
|
/*results=*/llvm::None));
|
|
|
|
builder.create<pdl_interp::FinalizeOp>(rewriter.getLoc());
|
|
return SymbolRefAttr::get(
|
|
builder.getContext(),
|
|
pdl_interp::PDLInterpDialect::getRewriterModuleName(),
|
|
SymbolRefAttr::get(rewriterFunc));
|
|
}
|
|
|
|
void PatternLowering::generateRewriter(
|
|
pdl::ApplyNativeRewriteOp rewriteOp, DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue) {
|
|
SmallVector<Value, 2> arguments;
|
|
for (Value argument : rewriteOp.args())
|
|
arguments.push_back(mapRewriteValue(argument));
|
|
auto interpOp = builder.create<pdl_interp::ApplyRewriteOp>(
|
|
rewriteOp.getLoc(), rewriteOp.getResultTypes(), rewriteOp.nameAttr(),
|
|
arguments);
|
|
for (auto it : llvm::zip(rewriteOp.getResults(), interpOp.getResults()))
|
|
rewriteValues[std::get<0>(it)] = std::get<1>(it);
|
|
}
|
|
|
|
void PatternLowering::generateRewriter(
|
|
pdl::AttributeOp attrOp, DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue) {
|
|
Value newAttr = builder.create<pdl_interp::CreateAttributeOp>(
|
|
attrOp.getLoc(), attrOp.valueAttr());
|
|
rewriteValues[attrOp] = newAttr;
|
|
}
|
|
|
|
void PatternLowering::generateRewriter(
|
|
pdl::EraseOp eraseOp, DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue) {
|
|
builder.create<pdl_interp::EraseOp>(eraseOp.getLoc(),
|
|
mapRewriteValue(eraseOp.operation()));
|
|
}
|
|
|
|
void PatternLowering::generateRewriter(
|
|
pdl::OperationOp operationOp, DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue) {
|
|
SmallVector<Value, 4> operands;
|
|
for (Value operand : operationOp.operands())
|
|
operands.push_back(mapRewriteValue(operand));
|
|
|
|
SmallVector<Value, 4> attributes;
|
|
for (Value attr : operationOp.attributes())
|
|
attributes.push_back(mapRewriteValue(attr));
|
|
|
|
bool hasInferredResultTypes = false;
|
|
SmallVector<Value, 2> types;
|
|
generateOperationResultTypeRewriter(operationOp, mapRewriteValue, types,
|
|
rewriteValues, hasInferredResultTypes);
|
|
|
|
// Create the new operation.
|
|
Location loc = operationOp.getLoc();
|
|
Value createdOp = builder.create<pdl_interp::CreateOperationOp>(
|
|
loc, *operationOp.name(), types, hasInferredResultTypes, operands,
|
|
attributes, operationOp.attributeNames());
|
|
rewriteValues[operationOp.op()] = createdOp;
|
|
|
|
// Generate accesses for any results that have their types constrained.
|
|
// Handle the case where there is a single range representing all of the
|
|
// result types.
|
|
OperandRange resultTys = operationOp.types();
|
|
if (resultTys.size() == 1 && resultTys[0].getType().isa<pdl::RangeType>()) {
|
|
Value &type = rewriteValues[resultTys[0]];
|
|
if (!type) {
|
|
auto results = builder.create<pdl_interp::GetResultsOp>(loc, createdOp);
|
|
type = builder.create<pdl_interp::GetValueTypeOp>(loc, results);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Otherwise, populate the individual results.
|
|
bool seenVariableLength = false;
|
|
Type valueTy = builder.getType<pdl::ValueType>();
|
|
Type valueRangeTy = pdl::RangeType::get(valueTy);
|
|
for (const auto &it : llvm::enumerate(resultTys)) {
|
|
Value &type = rewriteValues[it.value()];
|
|
if (type)
|
|
continue;
|
|
bool isVariadic = it.value().getType().isa<pdl::RangeType>();
|
|
seenVariableLength |= isVariadic;
|
|
|
|
// After a variable length result has been seen, we need to use result
|
|
// groups because the exact index of the result is not statically known.
|
|
Value resultVal;
|
|
if (seenVariableLength)
|
|
resultVal = builder.create<pdl_interp::GetResultsOp>(
|
|
loc, isVariadic ? valueRangeTy : valueTy, createdOp, it.index());
|
|
else
|
|
resultVal = builder.create<pdl_interp::GetResultOp>(
|
|
loc, valueTy, createdOp, it.index());
|
|
type = builder.create<pdl_interp::GetValueTypeOp>(loc, resultVal);
|
|
}
|
|
}
|
|
|
|
void PatternLowering::generateRewriter(
|
|
pdl::ReplaceOp replaceOp, DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue) {
|
|
SmallVector<Value, 4> replOperands;
|
|
|
|
// If the replacement was another operation, get its results. `pdl` allows
|
|
// for using an operation for simplicitly, but the interpreter isn't as
|
|
// user facing.
|
|
if (Value replOp = replaceOp.replOperation()) {
|
|
// Don't use replace if we know the replaced operation has no results.
|
|
auto opOp = replaceOp.operation().getDefiningOp<pdl::OperationOp>();
|
|
if (!opOp || !opOp.types().empty()) {
|
|
replOperands.push_back(builder.create<pdl_interp::GetResultsOp>(
|
|
replOp.getLoc(), mapRewriteValue(replOp)));
|
|
}
|
|
} else {
|
|
for (Value operand : replaceOp.replValues())
|
|
replOperands.push_back(mapRewriteValue(operand));
|
|
}
|
|
|
|
// If there are no replacement values, just create an erase instead.
|
|
if (replOperands.empty()) {
|
|
builder.create<pdl_interp::EraseOp>(replaceOp.getLoc(),
|
|
mapRewriteValue(replaceOp.operation()));
|
|
return;
|
|
}
|
|
|
|
builder.create<pdl_interp::ReplaceOp>(
|
|
replaceOp.getLoc(), mapRewriteValue(replaceOp.operation()), replOperands);
|
|
}
|
|
|
|
void PatternLowering::generateRewriter(
|
|
pdl::ResultOp resultOp, DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue) {
|
|
rewriteValues[resultOp] = builder.create<pdl_interp::GetResultOp>(
|
|
resultOp.getLoc(), builder.getType<pdl::ValueType>(),
|
|
mapRewriteValue(resultOp.parent()), resultOp.index());
|
|
}
|
|
|
|
void PatternLowering::generateRewriter(
|
|
pdl::ResultsOp resultOp, DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue) {
|
|
rewriteValues[resultOp] = builder.create<pdl_interp::GetResultsOp>(
|
|
resultOp.getLoc(), resultOp.getType(), mapRewriteValue(resultOp.parent()),
|
|
resultOp.index());
|
|
}
|
|
|
|
void PatternLowering::generateRewriter(
|
|
pdl::TypeOp typeOp, DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue) {
|
|
// If the type isn't constant, the users (e.g. OperationOp) will resolve this
|
|
// type.
|
|
if (TypeAttr typeAttr = typeOp.typeAttr()) {
|
|
rewriteValues[typeOp] =
|
|
builder.create<pdl_interp::CreateTypeOp>(typeOp.getLoc(), typeAttr);
|
|
}
|
|
}
|
|
|
|
void PatternLowering::generateRewriter(
|
|
pdl::TypesOp typeOp, DenseMap<Value, Value> &rewriteValues,
|
|
function_ref<Value(Value)> mapRewriteValue) {
|
|
// If the type isn't constant, the users (e.g. OperationOp) will resolve this
|
|
// type.
|
|
if (ArrayAttr typeAttr = typeOp.typesAttr()) {
|
|
rewriteValues[typeOp] = builder.create<pdl_interp::CreateTypesOp>(
|
|
typeOp.getLoc(), typeOp.getType(), typeAttr);
|
|
}
|
|
}
|
|
|
|
void PatternLowering::generateOperationResultTypeRewriter(
|
|
pdl::OperationOp op, function_ref<Value(Value)> mapRewriteValue,
|
|
SmallVectorImpl<Value> &types, DenseMap<Value, Value> &rewriteValues,
|
|
bool &hasInferredResultTypes) {
|
|
// Look for an operation that was replaced by `op`. The result types will be
|
|
// inferred from the results that were replaced.
|
|
Block *rewriterBlock = op->getBlock();
|
|
for (OpOperand &use : op.op().getUses()) {
|
|
// Check that the use corresponds to a ReplaceOp and that it is the
|
|
// replacement value, not the operation being replaced.
|
|
pdl::ReplaceOp replOpUser = dyn_cast<pdl::ReplaceOp>(use.getOwner());
|
|
if (!replOpUser || use.getOperandNumber() == 0)
|
|
continue;
|
|
// Make sure the replaced operation was defined before this one.
|
|
Value replOpVal = replOpUser.operation();
|
|
Operation *replacedOp = replOpVal.getDefiningOp();
|
|
if (replacedOp->getBlock() == rewriterBlock &&
|
|
!replacedOp->isBeforeInBlock(op))
|
|
continue;
|
|
|
|
Value replacedOpResults = builder.create<pdl_interp::GetResultsOp>(
|
|
replacedOp->getLoc(), mapRewriteValue(replOpVal));
|
|
types.push_back(builder.create<pdl_interp::GetValueTypeOp>(
|
|
replacedOp->getLoc(), replacedOpResults));
|
|
return;
|
|
}
|
|
|
|
// Try to handle resolution for each of the result types individually. This is
|
|
// preferred over type inferrence because it will allow for us to use existing
|
|
// types directly, as opposed to trying to rebuild the type list.
|
|
OperandRange resultTypeValues = op.types();
|
|
auto tryResolveResultTypes = [&] {
|
|
types.reserve(resultTypeValues.size());
|
|
for (const auto &it : llvm::enumerate(resultTypeValues)) {
|
|
Value resultType = it.value();
|
|
|
|
// Check for an already translated value.
|
|
if (Value existingRewriteValue = rewriteValues.lookup(resultType)) {
|
|
types.push_back(existingRewriteValue);
|
|
continue;
|
|
}
|
|
|
|
// Check for an input from the matcher.
|
|
if (resultType.getDefiningOp()->getBlock() != rewriterBlock) {
|
|
types.push_back(mapRewriteValue(resultType));
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we couldn't infer the result types. Bail out here to see if
|
|
// we can infer the types for this operation from another way.
|
|
types.clear();
|
|
return failure();
|
|
}
|
|
return success();
|
|
};
|
|
if (!resultTypeValues.empty() && succeeded(tryResolveResultTypes()))
|
|
return;
|
|
|
|
// Otherwise, check if the operation has type inference support itself.
|
|
if (op.hasTypeInference()) {
|
|
hasInferredResultTypes = true;
|
|
return;
|
|
}
|
|
|
|
// If the types could not be inferred from any context and there weren't any
|
|
// explicit result types, assume the user actually meant for the operation to
|
|
// have no results.
|
|
if (resultTypeValues.empty())
|
|
return;
|
|
|
|
// The verifier asserts that the result types of each pdl.operation can be
|
|
// inferred. If we reach here, there is a bug either in the logic above or
|
|
// in the verifier for pdl.operation.
|
|
op->emitOpError() << "unable to infer result type for operation";
|
|
llvm_unreachable("unable to infer result type for operation");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conversion Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct PDLToPDLInterpPass
|
|
: public ConvertPDLToPDLInterpBase<PDLToPDLInterpPass> {
|
|
void runOnOperation() final;
|
|
};
|
|
} // namespace
|
|
|
|
/// Convert the given module containing PDL pattern operations into a PDL
|
|
/// Interpreter operations.
|
|
void PDLToPDLInterpPass::runOnOperation() {
|
|
ModuleOp module = getOperation();
|
|
|
|
// Create the main matcher function This function contains all of the match
|
|
// related functionality from patterns in the module.
|
|
OpBuilder builder = OpBuilder::atBlockBegin(module.getBody());
|
|
auto matcherFunc = builder.create<pdl_interp::FuncOp>(
|
|
module.getLoc(), pdl_interp::PDLInterpDialect::getMatcherFunctionName(),
|
|
builder.getFunctionType(builder.getType<pdl::OperationType>(),
|
|
/*results=*/llvm::None),
|
|
/*attrs=*/llvm::None);
|
|
|
|
// Create a nested module to hold the functions invoked for rewriting the IR
|
|
// after a successful match.
|
|
ModuleOp rewriterModule = builder.create<ModuleOp>(
|
|
module.getLoc(), pdl_interp::PDLInterpDialect::getRewriterModuleName());
|
|
|
|
// Generate the code for the patterns within the module.
|
|
PatternLowering generator(matcherFunc, rewriterModule);
|
|
generator.lower(module);
|
|
|
|
// After generation, delete all of the pattern operations.
|
|
for (pdl::PatternOp pattern :
|
|
llvm::make_early_inc_range(module.getOps<pdl::PatternOp>()))
|
|
pattern.erase();
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>> mlir::createPDLToPDLInterpPass() {
|
|
return std::make_unique<PDLToPDLInterpPass>();
|
|
}
|