There are a couple of problems with the code to patch unrelocated BLX instructions: 1. The calculation of the PC needs to take into account the alignment of the instruction. The Thumb BLX uses alignDown(PC, 4) for the source address. 2. The calculation of the PC bias is hard-coded to 4 which works for Thumb, but when there is a BLX the branch will be in Arm state so it needs an 8 byte PC bias. No asssembler generates an unrelocated BLX instruction so these problems do not affect real world programs. However we should still fix them. Differential Revision: https://reviews.llvm.org/D104905
540 lines
22 KiB
C++
540 lines
22 KiB
C++
//===- ARMErrataFix.cpp ---------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// This file implements Section Patching for the purpose of working around the
|
|
// Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
|
|
// can result in an incorrect instruction fetch or processor deadlock." The
|
|
// erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
|
|
// Cortex-A8. A high level description of the patching technique is given in
|
|
// the opening comment of AArch64ErrataFix.cpp.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMErrataFix.h"
|
|
|
|
#include "Config.h"
|
|
#include "LinkerScript.h"
|
|
#include "OutputSections.h"
|
|
#include "Relocations.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/Memory.h"
|
|
#include "lld/Common/Strings.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support;
|
|
using namespace llvm::support::endian;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
// The documented title for Erratum 657417 is:
|
|
// "A 32bit branch instruction that spans two 4K regions can result in an
|
|
// incorrect instruction fetch or processor deadlock". Graphically using a
|
|
// 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
|
|
// xxxxxx000 // Memory region 1 start
|
|
// target:
|
|
// ...
|
|
// xxxxxxffe f7fe // First halfword of branch to target:
|
|
// xxxxxx000 // Memory region 2 start
|
|
// xxxxxx002 bfff // Second halfword of branch to target:
|
|
//
|
|
// The specific trigger conditions that can be detected at link time are:
|
|
// - There is a 32-bit Thumb-2 branch instruction with an address of the form
|
|
// xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
|
|
// second 2 bytes are in region 2.
|
|
// - The branch instruction is one of BLX, BL, B.w BCC.w
|
|
// - The instruction preceding the branch is a 32-bit non-branch instruction.
|
|
// - The target of the branch is in region 1.
|
|
//
|
|
// The linker mitigation for the fix is to redirect any branch that meets the
|
|
// erratum conditions to a patch section containing a branch to the target.
|
|
//
|
|
// As adding patch sections may move branches onto region boundaries the patch
|
|
// must iterate until no more patches are added.
|
|
//
|
|
// Example, before:
|
|
// 00000FFA func: NOP.w // 32-bit Thumb function
|
|
// 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st.
|
|
// Example, after:
|
|
// 00000FFA func: NOP.w // 32-bit Thumb function
|
|
// 00000FFE B.w __CortexA8657417_00000FFE
|
|
// 00001002 2 - bytes padding
|
|
// 00001004 __CortexA8657417_00000FFE: B.w func
|
|
|
|
class elf::Patch657417Section : public SyntheticSection {
|
|
public:
|
|
Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM);
|
|
|
|
void writeTo(uint8_t *buf) override;
|
|
|
|
size_t getSize() const override { return 4; }
|
|
|
|
// Get the virtual address of the branch instruction at patcheeOffset.
|
|
uint64_t getBranchAddr() const;
|
|
|
|
static bool classof(const SectionBase *d) {
|
|
return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
|
|
}
|
|
|
|
// The Section we are patching.
|
|
const InputSection *patchee;
|
|
// The offset of the instruction in the Patchee section we are patching.
|
|
uint64_t patcheeOffset;
|
|
// A label for the start of the Patch that we can use as a relocation target.
|
|
Symbol *patchSym;
|
|
// A decoding of the branch instruction at patcheeOffset.
|
|
uint32_t instr;
|
|
// True If the patch is to be written in ARM state, otherwise the patch will
|
|
// be written in Thumb state.
|
|
bool isARM;
|
|
};
|
|
|
|
// Return true if the half-word, when taken as the first of a pair of halfwords
|
|
// is the first half of a 32-bit instruction.
|
|
// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
|
|
// section A6.3: 32-bit Thumb instruction encoding
|
|
// | HW1 | HW2 |
|
|
// | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) |
|
|
// With op1 == 0b00, a 16-bit instruction is encoded.
|
|
//
|
|
// We test only the first halfword, looking for op != 0b00.
|
|
static bool is32bitInstruction(uint16_t hw) {
|
|
return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
|
|
}
|
|
|
|
// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
|
|
// section A6.3.4 Branches and miscellaneous control.
|
|
// | HW1 | HW2 |
|
|
// | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
|
|
// op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
|
|
// op1 == 0x1 | Branch (B.W)
|
|
// op1 == 1x0 | Branch with Link and Exchange (BLX.w)
|
|
// op1 == 1x1 | Branch with Link (BL.W)
|
|
|
|
static bool isBcc(uint32_t instr) {
|
|
return (instr & 0xf800d000) == 0xf0008000 &&
|
|
(instr & 0x03800000) != 0x03800000;
|
|
}
|
|
|
|
static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }
|
|
|
|
static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }
|
|
|
|
static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }
|
|
|
|
static bool is32bitBranch(uint32_t instr) {
|
|
return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
|
|
}
|
|
|
|
Patch657417Section::Patch657417Section(InputSection *p, uint64_t off,
|
|
uint32_t instr, bool isARM)
|
|
: SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
|
|
".text.patch"),
|
|
patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
|
|
parent = p->getParent();
|
|
patchSym = addSyntheticLocal(
|
|
saver.save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC,
|
|
isARM ? 0 : 1, getSize(), *this);
|
|
addSyntheticLocal(saver.save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this);
|
|
}
|
|
|
|
uint64_t Patch657417Section::getBranchAddr() const {
|
|
return patchee->getVA(patcheeOffset);
|
|
}
|
|
|
|
// Given a branch instruction instr at sourceAddr work out its destination
|
|
// address. This is only used when the branch instruction has no relocation.
|
|
static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) {
|
|
uint8_t buf[4];
|
|
write16le(buf, instr >> 16);
|
|
write16le(buf + 2, instr & 0x0000ffff);
|
|
int64_t offset;
|
|
if (isBcc(instr))
|
|
offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
|
|
else if (isB(instr))
|
|
offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
|
|
else
|
|
offset = target->getImplicitAddend(buf, R_ARM_THM_CALL);
|
|
// A BLX instruction from Thumb to Arm may have an address that is
|
|
// not 4-byte aligned. As Arm instructions are always 4-byte aligned
|
|
// the instruction is calculated (from Arm ARM):
|
|
// targetAddress = Align(PC, 4) + imm32
|
|
// where
|
|
// Align(x, y) = y * (x Div y)
|
|
// which corresponds to alignDown.
|
|
if (isBLX(instr))
|
|
sourceAddr = alignDown(sourceAddr, 4);
|
|
return sourceAddr + offset + 4;
|
|
}
|
|
|
|
void Patch657417Section::writeTo(uint8_t *buf) {
|
|
// The base instruction of the patch is always a 32-bit unconditional branch.
|
|
if (isARM)
|
|
write32le(buf, 0xea000000);
|
|
else
|
|
write32le(buf, 0x9000f000);
|
|
// If we have a relocation then apply it.
|
|
if (!relocations.empty()) {
|
|
relocateAlloc(buf, buf + getSize());
|
|
return;
|
|
}
|
|
|
|
// If we don't have a relocation then we must calculate and write the offset
|
|
// ourselves.
|
|
// Get the destination offset from the addend in the branch instruction.
|
|
// We cannot use the instruction in the patchee section as this will have
|
|
// been altered to point to us!
|
|
uint64_t s = getThumbDestAddr(getBranchAddr(), instr);
|
|
// A BLX changes the state of the branch in the patch to Arm state, which
|
|
// has a PC Bias of 8, whereas in all other cases the branch is in Thumb
|
|
// state with a PC Bias of 4.
|
|
uint64_t pcBias = isBLX(instr) ? 8 : 4;
|
|
uint64_t p = getVA(pcBias);
|
|
target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p);
|
|
}
|
|
|
|
// Given a branch instruction spanning two 4KiB regions, at offset off from the
|
|
// start of isec, return true if the destination of the branch is within the
|
|
// first of the two 4Kib regions.
|
|
static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off,
|
|
uint32_t instr, const Relocation *r) {
|
|
uint64_t sourceAddr = isec->getVA(0) + off;
|
|
assert((sourceAddr & 0xfff) == 0xffe);
|
|
uint64_t destAddr = sourceAddr;
|
|
// If there is a branch relocation at the same offset we must use this to
|
|
// find the destination address as the branch could be indirected via a thunk
|
|
// or the PLT.
|
|
if (r) {
|
|
uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA();
|
|
// Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
|
|
destAddr = dst + r->addend + 4;
|
|
} else {
|
|
// If there is no relocation, we must have an intra-section branch
|
|
// We must extract the offset from the addend manually.
|
|
destAddr = getThumbDestAddr(sourceAddr, instr);
|
|
}
|
|
|
|
return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
|
|
}
|
|
|
|
// Return true if a branch can reach a patch section placed after isec.
|
|
// The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
|
|
static bool patchInRange(const InputSection *isec, uint64_t off,
|
|
uint32_t instr) {
|
|
|
|
// We need the branch at source to reach a patch section placed immediately
|
|
// after isec. As there can be more than one patch in the patch section we
|
|
// add 0x100 as contingency to account for worst case of 1 branch every 4KiB
|
|
// for a 1 MiB range.
|
|
return target->inBranchRange(
|
|
isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
|
|
isec->getVA() + isec->getSize() + 0x100);
|
|
}
|
|
|
|
struct ScanResult {
|
|
// Offset of branch within its InputSection.
|
|
uint64_t off;
|
|
// Cached decoding of the branch instruction.
|
|
uint32_t instr;
|
|
// Branch relocation at off. Will be nullptr if no relocation exists.
|
|
Relocation *rel;
|
|
};
|
|
|
|
// Detect the erratum sequence, returning the offset of the branch instruction
|
|
// and a decoding of the branch. If the erratum sequence is not found then
|
|
// return an offset of 0 for the branch. 0 is a safe value to use for no patch
|
|
// as there must be at least one 32-bit non-branch instruction before the
|
|
// branch so the minimum offset for a patch is 4.
|
|
static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
|
|
uint64_t limit) {
|
|
uint64_t isecAddr = isec->getVA(0);
|
|
// Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
|
|
// need to check for a 32-bit instruction immediately before a 32-bit branch
|
|
// at 0xffe modulo 0x1000.
|
|
off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
|
|
if (off >= limit || limit - off < 8) {
|
|
// Need at least 2 4-byte sized instructions to trigger erratum.
|
|
off = limit;
|
|
return {0, 0, nullptr};
|
|
}
|
|
|
|
ScanResult scanRes = {0, 0, nullptr};
|
|
const uint8_t *buf = isec->data().begin();
|
|
// ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
|
|
// little-endian halfwords.
|
|
const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
|
|
uint16_t hw11 = *instBuf++;
|
|
uint16_t hw12 = *instBuf++;
|
|
uint16_t hw21 = *instBuf++;
|
|
uint16_t hw22 = *instBuf++;
|
|
if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
|
|
uint32_t instr1 = (hw11 << 16) | hw12;
|
|
uint32_t instr2 = (hw21 << 16) | hw22;
|
|
if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
|
|
// Find a relocation for the branch if it exists. This will be used
|
|
// to determine the target.
|
|
uint64_t branchOff = off + 4;
|
|
auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
|
|
return r.offset == branchOff &&
|
|
(r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
|
|
r.type == R_ARM_THM_CALL);
|
|
});
|
|
if (relIt != isec->relocations.end())
|
|
scanRes.rel = &(*relIt);
|
|
if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) {
|
|
if (patchInRange(isec, branchOff, instr2)) {
|
|
scanRes.off = branchOff;
|
|
scanRes.instr = instr2;
|
|
} else {
|
|
warn(toString(isec->file) +
|
|
": skipping cortex-a8 657417 erratum sequence, section " +
|
|
isec->name + " is too large to patch");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
off += 0x1000;
|
|
return scanRes;
|
|
}
|
|
|
|
void ARMErr657417Patcher::init() {
|
|
// The Arm ABI permits a mix of ARM, Thumb and Data in the same
|
|
// InputSection. We must only scan Thumb instructions to avoid false
|
|
// matches. We use the mapping symbols in the InputObjects to identify this
|
|
// data, caching the results in sectionMap so we don't have to recalculate
|
|
// it each pass.
|
|
|
|
// The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
|
|
// half open intervals [Symbol Value, Next Symbol Value) of code and data
|
|
// within sections. If there is no next symbol then the half open interval is
|
|
// [Symbol Value, End of section). The type, code or data, is determined by
|
|
// the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
|
|
auto isArmMapSymbol = [](const Symbol *s) {
|
|
return s->getName() == "$a" || s->getName().startswith("$a.");
|
|
};
|
|
auto isThumbMapSymbol = [](const Symbol *s) {
|
|
return s->getName() == "$t" || s->getName().startswith("$t.");
|
|
};
|
|
auto isDataMapSymbol = [](const Symbol *s) {
|
|
return s->getName() == "$d" || s->getName().startswith("$d.");
|
|
};
|
|
|
|
// Collect mapping symbols for every executable InputSection.
|
|
for (InputFile *file : objectFiles) {
|
|
auto *f = cast<ObjFile<ELF32LE>>(file);
|
|
for (Symbol *s : f->getLocalSymbols()) {
|
|
auto *def = dyn_cast<Defined>(s);
|
|
if (!def)
|
|
continue;
|
|
if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
|
|
!isDataMapSymbol(def))
|
|
continue;
|
|
if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
|
|
if (sec->flags & SHF_EXECINSTR)
|
|
sectionMap[sec].push_back(def);
|
|
}
|
|
}
|
|
// For each InputSection make sure the mapping symbols are in sorted in
|
|
// ascending order and are in alternating Thumb, non-Thumb order.
|
|
for (auto &kv : sectionMap) {
|
|
std::vector<const Defined *> &mapSyms = kv.second;
|
|
llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
|
|
return a->value < b->value;
|
|
});
|
|
mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
|
|
[=](const Defined *a, const Defined *b) {
|
|
return (isThumbMapSymbol(a) ==
|
|
isThumbMapSymbol(b));
|
|
}),
|
|
mapSyms.end());
|
|
// Always start with a Thumb Mapping Symbol
|
|
if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
|
|
mapSyms.erase(mapSyms.begin());
|
|
}
|
|
initialized = true;
|
|
}
|
|
|
|
void ARMErr657417Patcher::insertPatches(
|
|
InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
|
|
uint64_t spacing = 0x100000 - 0x7500;
|
|
uint64_t isecLimit;
|
|
uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
|
|
uint64_t patchUpperBound = prevIsecLimit + spacing;
|
|
uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
|
|
|
|
// Set the outSecOff of patches to the place where we want to insert them.
|
|
// We use a similar strategy to initial thunk placement, using 1 MiB as the
|
|
// range of the Thumb-2 conditional branch with a contingency accounting for
|
|
// thunk generation.
|
|
auto patchIt = patches.begin();
|
|
auto patchEnd = patches.end();
|
|
for (const InputSection *isec : isd.sections) {
|
|
isecLimit = isec->outSecOff + isec->getSize();
|
|
if (isecLimit > patchUpperBound) {
|
|
for (; patchIt != patchEnd; ++patchIt) {
|
|
if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
|
|
break;
|
|
(*patchIt)->outSecOff = prevIsecLimit;
|
|
}
|
|
patchUpperBound = prevIsecLimit + spacing;
|
|
}
|
|
prevIsecLimit = isecLimit;
|
|
}
|
|
for (; patchIt != patchEnd; ++patchIt)
|
|
(*patchIt)->outSecOff = isecLimit;
|
|
|
|
// Merge all patch sections. We use the outSecOff assigned above to
|
|
// determine the insertion point. This is ok as we only merge into an
|
|
// InputSectionDescription once per pass, and at the end of the pass
|
|
// assignAddresses() will recalculate all the outSecOff values.
|
|
std::vector<InputSection *> tmp;
|
|
tmp.reserve(isd.sections.size() + patches.size());
|
|
auto mergeCmp = [](const InputSection *a, const InputSection *b) {
|
|
if (a->outSecOff != b->outSecOff)
|
|
return a->outSecOff < b->outSecOff;
|
|
return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
|
|
};
|
|
std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
|
|
patches.end(), std::back_inserter(tmp), mergeCmp);
|
|
isd.sections = std::move(tmp);
|
|
}
|
|
|
|
// Given a branch instruction described by ScanRes redirect it to a patch
|
|
// section containing an unconditional branch instruction to the target.
|
|
// Ensure that this patch section is 4-byte aligned so that the branch cannot
|
|
// span two 4 KiB regions. Place the patch section so that it is always after
|
|
// isec so the branch we are patching always goes forwards.
|
|
static void implementPatch(ScanResult sr, InputSection *isec,
|
|
std::vector<Patch657417Section *> &patches) {
|
|
|
|
log("detected cortex-a8-657419 erratum sequence starting at " +
|
|
utohexstr(isec->getVA(sr.off)) + " in unpatched output.");
|
|
Patch657417Section *psec;
|
|
// We have two cases to deal with.
|
|
// Case 1. There is a relocation at patcheeOffset to a symbol. The
|
|
// unconditional branch in the patch must have a relocation so that any
|
|
// further redirection via the PLT or a Thunk happens as normal. At
|
|
// patcheeOffset we redirect the existing relocation to a Symbol defined at
|
|
// the start of the patch section.
|
|
//
|
|
// Case 2. There is no relocation at patcheeOffset. We are unlikely to have
|
|
// a symbol that we can use as a target for a relocation in the patch section.
|
|
// Luckily we know that the destination cannot be indirected via the PLT or
|
|
// a Thunk so we can just write the destination directly.
|
|
if (sr.rel) {
|
|
// Case 1. We have an existing relocation to redirect to patch and a
|
|
// Symbol target.
|
|
|
|
// Create a branch relocation for the unconditional branch in the patch.
|
|
// This can be redirected via the PLT or Thunks.
|
|
RelType patchRelType = R_ARM_THM_JUMP24;
|
|
int64_t patchRelAddend = sr.rel->addend;
|
|
bool destIsARM = false;
|
|
if (isBL(sr.instr) || isBLX(sr.instr)) {
|
|
// The final target of the branch may be ARM or Thumb, if the target
|
|
// is ARM then we write the patch in ARM state to avoid a state change
|
|
// Thunk from the patch to the target.
|
|
uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA()
|
|
: sr.rel->sym->getVA();
|
|
destIsARM = (dstSymAddr & 1) == 0;
|
|
}
|
|
psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM);
|
|
if (destIsARM) {
|
|
// The patch will be in ARM state. Use an ARM relocation and account for
|
|
// the larger ARM PC-bias of 8 rather than Thumb's 4.
|
|
patchRelType = R_ARM_JUMP24;
|
|
patchRelAddend -= 4;
|
|
}
|
|
psec->relocations.push_back(
|
|
Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
|
|
// Redirect the existing branch relocation to the patch.
|
|
sr.rel->expr = R_PC;
|
|
sr.rel->addend = -4;
|
|
sr.rel->sym = psec->patchSym;
|
|
} else {
|
|
// Case 2. We do not have a relocation to the patch. Add a relocation of the
|
|
// appropriate type to the patch at patcheeOffset.
|
|
|
|
// The destination is ARM if we have a BLX.
|
|
psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr));
|
|
RelType type;
|
|
if (isBcc(sr.instr))
|
|
type = R_ARM_THM_JUMP19;
|
|
else if (isB(sr.instr))
|
|
type = R_ARM_THM_JUMP24;
|
|
else
|
|
type = R_ARM_THM_CALL;
|
|
isec->relocations.push_back(
|
|
Relocation{R_PC, type, sr.off, -4, psec->patchSym});
|
|
}
|
|
patches.push_back(psec);
|
|
}
|
|
|
|
// Scan all the instructions in InputSectionDescription, for each instance of
|
|
// the erratum sequence create a Patch657417Section. We return the list of
|
|
// Patch657417Sections that need to be applied to the InputSectionDescription.
|
|
std::vector<Patch657417Section *>
|
|
ARMErr657417Patcher::patchInputSectionDescription(
|
|
InputSectionDescription &isd) {
|
|
std::vector<Patch657417Section *> patches;
|
|
for (InputSection *isec : isd.sections) {
|
|
// LLD doesn't use the erratum sequence in SyntheticSections.
|
|
if (isa<SyntheticSection>(isec))
|
|
continue;
|
|
// Use sectionMap to make sure we only scan Thumb code and not Arm or inline
|
|
// data. We have already sorted mapSyms in ascending order and removed
|
|
// consecutive mapping symbols of the same type. Our range of executable
|
|
// instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
|
|
// or [thumbSym->value, section size).
|
|
std::vector<const Defined *> &mapSyms = sectionMap[isec];
|
|
|
|
auto thumbSym = mapSyms.begin();
|
|
while (thumbSym != mapSyms.end()) {
|
|
auto nonThumbSym = std::next(thumbSym);
|
|
uint64_t off = (*thumbSym)->value;
|
|
uint64_t limit = (nonThumbSym == mapSyms.end()) ? isec->data().size()
|
|
: (*nonThumbSym)->value;
|
|
|
|
while (off < limit) {
|
|
ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
|
|
if (sr.off)
|
|
implementPatch(sr, isec, patches);
|
|
}
|
|
if (nonThumbSym == mapSyms.end())
|
|
break;
|
|
thumbSym = std::next(nonThumbSym);
|
|
}
|
|
}
|
|
return patches;
|
|
}
|
|
|
|
bool ARMErr657417Patcher::createFixes() {
|
|
if (!initialized)
|
|
init();
|
|
|
|
bool addressesChanged = false;
|
|
for (OutputSection *os : outputSections) {
|
|
if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
|
|
continue;
|
|
for (BaseCommand *bc : os->sectionCommands)
|
|
if (auto *isd = dyn_cast<InputSectionDescription>(bc)) {
|
|
std::vector<Patch657417Section *> patches =
|
|
patchInputSectionDescription(*isd);
|
|
if (!patches.empty()) {
|
|
insertPatches(*isd, patches);
|
|
addressesChanged = true;
|
|
}
|
|
}
|
|
}
|
|
return addressesChanged;
|
|
}
|