Files
clang-p2996/lldb/source/Utility/ReproducerInstrumentation.cpp
Martin Storsjö 7106f58856 [lldb] Make the thread_local g_global_boundary accessed from a single file
This makes the compiler generated code for accessing the thread local
variable much simpler (no need for wrapper functions and weak pointers
to potential init functions), and can avoid toolchain bugs regarding how
to access TLS variables.

In particular, this fixes LLDB when built with current GCC/binutils for
MinGW, see https://github.com/msys2/MINGW-packages/issues/8868.

Differential Revision: https://reviews.llvm.org/D111779
2021-10-14 11:17:20 +03:00

263 lines
7.9 KiB
C++

//===-- ReproducerInstrumentation.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/ReproducerInstrumentation.h"
#include "lldb/Utility/Reproducer.h"
#include <cstdio>
#include <cstdlib>
#include <limits>
#include <thread>
using namespace lldb_private;
using namespace lldb_private::repro;
// Whether we're currently across the API boundary.
static thread_local bool g_global_boundary = false;
void *IndexToObject::GetObjectForIndexImpl(unsigned idx) {
return m_mapping.lookup(idx);
}
void IndexToObject::AddObjectForIndexImpl(unsigned idx, void *object) {
assert(idx != 0 && "Cannot add object for sentinel");
m_mapping[idx] = object;
}
std::vector<void *> IndexToObject::GetAllObjects() const {
std::vector<std::pair<unsigned, void *>> pairs;
for (auto &e : m_mapping) {
pairs.emplace_back(e.first, e.second);
}
// Sort based on index.
std::sort(pairs.begin(), pairs.end(),
[](auto &lhs, auto &rhs) { return lhs.first < rhs.first; });
std::vector<void *> objects;
objects.reserve(pairs.size());
for (auto &p : pairs) {
objects.push_back(p.second);
}
return objects;
}
template <> const uint8_t *Deserializer::Deserialize<const uint8_t *>() {
return Deserialize<uint8_t *>();
}
template <> void *Deserializer::Deserialize<void *>() {
return const_cast<void *>(Deserialize<const void *>());
}
template <> const void *Deserializer::Deserialize<const void *>() {
return nullptr;
}
template <> char *Deserializer::Deserialize<char *>() {
return const_cast<char *>(Deserialize<const char *>());
}
template <> const char *Deserializer::Deserialize<const char *>() {
const size_t size = Deserialize<size_t>();
if (size == std::numeric_limits<size_t>::max())
return nullptr;
assert(HasData(size + 1));
const char *str = m_buffer.data();
m_buffer = m_buffer.drop_front(size + 1);
#ifdef LLDB_REPRO_INSTR_TRACE
llvm::errs() << "Deserializing with " << LLVM_PRETTY_FUNCTION << " -> \""
<< str << "\"\n";
#endif
return str;
}
template <> const char **Deserializer::Deserialize<const char **>() {
const size_t size = Deserialize<size_t>();
if (size == 0)
return nullptr;
const char **r =
reinterpret_cast<const char **>(calloc(size + 1, sizeof(char *)));
for (size_t i = 0; i < size; ++i)
r[i] = Deserialize<const char *>();
return r;
}
void Deserializer::CheckSequence(unsigned sequence) {
if (m_expected_sequence && *m_expected_sequence != sequence)
llvm::report_fatal_error(
"The result does not match the preceding "
"function. This is probably the result of concurrent "
"use of the SB API during capture, which is currently not "
"supported.");
m_expected_sequence.reset();
}
bool Registry::Replay(const FileSpec &file) {
auto error_or_file = llvm::MemoryBuffer::getFile(file.GetPath());
if (auto err = error_or_file.getError())
return false;
return Replay((*error_or_file)->getBuffer());
}
bool Registry::Replay(llvm::StringRef buffer) {
Deserializer deserializer(buffer);
return Replay(deserializer);
}
bool Registry::Replay(Deserializer &deserializer) {
#ifndef LLDB_REPRO_INSTR_TRACE
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_API);
#endif
// Disable buffering stdout so that we approximate the way things get flushed
// during an interactive session.
setvbuf(stdout, nullptr, _IONBF, 0);
while (deserializer.HasData(1)) {
unsigned sequence = deserializer.Deserialize<unsigned>();
unsigned id = deserializer.Deserialize<unsigned>();
#ifndef LLDB_REPRO_INSTR_TRACE
LLDB_LOG(log, "Replaying {0}: {1}", id, GetSignature(id));
#else
llvm::errs() << "Replaying " << id << ": " << GetSignature(id) << "\n";
#endif
deserializer.SetExpectedSequence(sequence);
GetReplayer(id)->operator()(deserializer);
}
// Add a small artificial delay to ensure that all asynchronous events have
// completed before we exit.
std::this_thread::sleep_for(std::chrono::milliseconds(100));
return true;
}
void Registry::DoRegister(uintptr_t RunID, std::unique_ptr<Replayer> replayer,
SignatureStr signature) {
const unsigned id = m_replayers.size() + 1;
assert(m_replayers.find(RunID) == m_replayers.end());
m_replayers[RunID] = std::make_pair(std::move(replayer), id);
m_ids[id] =
std::make_pair(m_replayers[RunID].first.get(), std::move(signature));
}
unsigned Registry::GetID(uintptr_t addr) {
unsigned id = m_replayers[addr].second;
assert(id != 0 && "Forgot to add function to registry?");
return id;
}
std::string Registry::GetSignature(unsigned id) {
assert(m_ids.count(id) != 0 && "ID not in registry");
return m_ids[id].second.ToString();
}
void Registry::CheckID(unsigned expected, unsigned actual) {
if (expected != actual) {
llvm::errs() << "Reproducer expected signature " << expected << ": '"
<< GetSignature(expected) << "'\n";
llvm::errs() << "Reproducer actual signature " << actual << ": '"
<< GetSignature(actual) << "'\n";
llvm::report_fatal_error(
"Detected reproducer replay divergence. Refusing to continue.");
}
#ifdef LLDB_REPRO_INSTR_TRACE
llvm::errs() << "Replaying " << actual << ": " << GetSignature(actual)
<< "\n";
#endif
}
Replayer *Registry::GetReplayer(unsigned id) {
assert(m_ids.count(id) != 0 && "ID not in registry");
return m_ids[id].first;
}
std::string Registry::SignatureStr::ToString() const {
return (result + (result.empty() ? "" : " ") + scope + "::" + name + args)
.str();
}
unsigned ObjectToIndex::GetIndexForObjectImpl(const void *object) {
unsigned index = m_mapping.size() + 1;
auto it = m_mapping.find(object);
if (it == m_mapping.end())
m_mapping[object] = index;
return m_mapping[object];
}
Recorder::Recorder()
: m_pretty_func(), m_pretty_args(),
m_sequence(std::numeric_limits<unsigned>::max()) {
if (!g_global_boundary) {
g_global_boundary = true;
m_local_boundary = true;
m_sequence = GetNextSequenceNumber();
}
}
Recorder::Recorder(llvm::StringRef pretty_func, std::string &&pretty_args)
: m_serializer(nullptr), m_pretty_func(pretty_func),
m_pretty_args(pretty_args), m_local_boundary(false),
m_result_recorded(true),
m_sequence(std::numeric_limits<unsigned>::max()) {
if (!g_global_boundary) {
g_global_boundary = true;
m_local_boundary = true;
m_sequence = GetNextSequenceNumber();
LLDB_LOG(GetLogIfAllCategoriesSet(LIBLLDB_LOG_API), "{0} ({1})",
m_pretty_func, m_pretty_args);
}
}
Recorder::~Recorder() {
assert(m_result_recorded && "Did you forget LLDB_RECORD_RESULT?");
UpdateBoundary();
}
unsigned Recorder::GetSequenceNumber() const {
assert(m_sequence != std::numeric_limits<unsigned>::max());
return m_sequence;
}
void Recorder::PrivateThread() { g_global_boundary = true; }
void Recorder::UpdateBoundary() {
if (m_local_boundary)
g_global_boundary = false;
}
void InstrumentationData::Initialize(Serializer &serializer,
Registry &registry) {
InstanceImpl().emplace(serializer, registry);
}
void InstrumentationData::Initialize(Deserializer &deserializer,
Registry &registry) {
InstanceImpl().emplace(deserializer, registry);
}
InstrumentationData &InstrumentationData::Instance() {
if (!InstanceImpl())
InstanceImpl().emplace();
return *InstanceImpl();
}
llvm::Optional<InstrumentationData> &InstrumentationData::InstanceImpl() {
static llvm::Optional<InstrumentationData> g_instrumentation_data;
return g_instrumentation_data;
}
std::atomic<unsigned> lldb_private::repro::Recorder::g_sequence;
std::mutex lldb_private::repro::Recorder::g_mutex;