The current implementation used explicit index->int64_t casts for some, but not all instances of passing values of type "index" in and from the sparse support library. This revision makes the situation more consistent by using new "index_t" type at all such places (which allows for less trivial casting in the generated MLIR code). Note that the current revision still assumes that "index" is 64-bit wide. If we want to support targets with alternative "index" bit widths, we need to build the support library different. But the current revision is a step forward by making this requirement explicit and more visible. Reviewed By: wrengr Differential Revision: https://reviews.llvm.org/D112122
791 lines
32 KiB
C++
791 lines
32 KiB
C++
//===- SparseUtils.cpp - Sparse Utils for MLIR execution ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a light-weight runtime support library that is useful
|
|
// for sparse tensor manipulations. The functionality provided in this library
|
|
// is meant to simplify benchmarking, testing, and debugging MLIR code that
|
|
// operates on sparse tensors. The provided functionality is **not** part
|
|
// of core MLIR, however.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/ExecutionEngine/CRunnerUtils.h"
|
|
|
|
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <cinttypes>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Internal support for storing and reading sparse tensors.
|
|
//
|
|
// The following memory-resident sparse storage schemes are supported:
|
|
//
|
|
// (a) A coordinate scheme for temporarily storing and lexicographically
|
|
// sorting a sparse tensor by index (SparseTensorCOO).
|
|
//
|
|
// (b) A "one-size-fits-all" sparse tensor storage scheme defined by
|
|
// per-dimension sparse/dense annnotations together with a dimension
|
|
// ordering used by MLIR compiler-generated code (SparseTensorStorage).
|
|
//
|
|
// The following external formats are supported:
|
|
//
|
|
// (1) Matrix Market Exchange (MME): *.mtx
|
|
// https://math.nist.gov/MatrixMarket/formats.html
|
|
//
|
|
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
|
|
// http://frostt.io/tensors/file-formats.html
|
|
//
|
|
// Two public APIs are supported:
|
|
//
|
|
// (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
|
|
// tensors. These methods should be used exclusively by MLIR
|
|
// compiler-generated code.
|
|
//
|
|
// (II) Methods that accept C-style data structures to interact with sparse
|
|
// tensors. These methods can be used by any external runtime that wants
|
|
// to interact with MLIR compiler-generated code.
|
|
//
|
|
// In both cases (I) and (II), the SparseTensorStorage format is externally
|
|
// only visible as an opaque pointer.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// A sparse tensor element in coordinate scheme (value and indices).
|
|
/// For example, a rank-1 vector element would look like
|
|
/// ({i}, a[i])
|
|
/// and a rank-5 tensor element like
|
|
/// ({i,j,k,l,m}, a[i,j,k,l,m])
|
|
template <typename V>
|
|
struct Element {
|
|
Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){};
|
|
std::vector<uint64_t> indices;
|
|
V value;
|
|
};
|
|
|
|
/// A memory-resident sparse tensor in coordinate scheme (collection of
|
|
/// elements). This data structure is used to read a sparse tensor from
|
|
/// any external format into memory and sort the elements lexicographically
|
|
/// by indices before passing it back to the client (most packed storage
|
|
/// formats require the elements to appear in lexicographic index order).
|
|
template <typename V>
|
|
struct SparseTensorCOO {
|
|
public:
|
|
SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity)
|
|
: sizes(szs) {
|
|
if (capacity)
|
|
elements.reserve(capacity);
|
|
}
|
|
/// Adds element as indices and value.
|
|
void add(const std::vector<uint64_t> &ind, V val) {
|
|
uint64_t rank = getRank();
|
|
assert(rank == ind.size());
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
assert(ind[r] < sizes[r]); // within bounds
|
|
elements.emplace_back(ind, val);
|
|
}
|
|
/// Sorts elements lexicographically by index.
|
|
void sort() { std::sort(elements.begin(), elements.end(), lexOrder); }
|
|
/// Returns rank.
|
|
uint64_t getRank() const { return sizes.size(); }
|
|
/// Getter for sizes array.
|
|
const std::vector<uint64_t> &getSizes() const { return sizes; }
|
|
/// Getter for elements array.
|
|
const std::vector<Element<V>> &getElements() const { return elements; }
|
|
|
|
/// Factory method. Permutes the original dimensions according to
|
|
/// the given ordering and expects subsequent add() calls to honor
|
|
/// that same ordering for the given indices. The result is a
|
|
/// fully permuted coordinate scheme.
|
|
static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank,
|
|
const uint64_t *sizes,
|
|
const uint64_t *perm,
|
|
uint64_t capacity = 0) {
|
|
std::vector<uint64_t> permsz(rank);
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
permsz[perm[r]] = sizes[r];
|
|
return new SparseTensorCOO<V>(permsz, capacity);
|
|
}
|
|
|
|
private:
|
|
/// Returns true if indices of e1 < indices of e2.
|
|
static bool lexOrder(const Element<V> &e1, const Element<V> &e2) {
|
|
uint64_t rank = e1.indices.size();
|
|
assert(rank == e2.indices.size());
|
|
for (uint64_t r = 0; r < rank; r++) {
|
|
if (e1.indices[r] == e2.indices[r])
|
|
continue;
|
|
return e1.indices[r] < e2.indices[r];
|
|
}
|
|
return false;
|
|
}
|
|
std::vector<uint64_t> sizes; // per-dimension sizes
|
|
std::vector<Element<V>> elements;
|
|
};
|
|
|
|
/// Abstract base class of sparse tensor storage. Note that we use
|
|
/// function overloading to implement "partial" method specialization.
|
|
class SparseTensorStorageBase {
|
|
public:
|
|
enum DimLevelType : uint8_t { kDense = 0, kCompressed = 1, kSingleton = 2 };
|
|
|
|
virtual uint64_t getDimSize(uint64_t) = 0;
|
|
|
|
// Overhead storage.
|
|
virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); }
|
|
virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); }
|
|
virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); }
|
|
virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); }
|
|
virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); }
|
|
virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); }
|
|
virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); }
|
|
virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); }
|
|
|
|
// Primary storage.
|
|
virtual void getValues(std::vector<double> **) { fatal("valf64"); }
|
|
virtual void getValues(std::vector<float> **) { fatal("valf32"); }
|
|
virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); }
|
|
virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); }
|
|
virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); }
|
|
virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); }
|
|
|
|
virtual ~SparseTensorStorageBase() {}
|
|
|
|
private:
|
|
void fatal(const char *tp) {
|
|
fprintf(stderr, "unsupported %s\n", tp);
|
|
exit(1);
|
|
}
|
|
};
|
|
|
|
/// A memory-resident sparse tensor using a storage scheme based on
|
|
/// per-dimension sparse/dense annotations. This data structure provides a
|
|
/// bufferized form of a sparse tensor type. In contrast to generating setup
|
|
/// methods for each differently annotated sparse tensor, this method provides
|
|
/// a convenient "one-size-fits-all" solution that simply takes an input tensor
|
|
/// and annotations to implement all required setup in a general manner.
|
|
template <typename P, typename I, typename V>
|
|
class SparseTensorStorage : public SparseTensorStorageBase {
|
|
public:
|
|
/// Constructs a sparse tensor storage scheme with the given dimensions,
|
|
/// permutation, and per-dimension dense/sparse annotations, using
|
|
/// the coordinate scheme tensor for the initial contents if provided.
|
|
SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm,
|
|
const uint8_t *sparsity, SparseTensorCOO<V> *tensor)
|
|
: sizes(szs), rev(getRank()), pointers(getRank()), indices(getRank()) {
|
|
uint64_t rank = getRank();
|
|
// Store "reverse" permutation.
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
rev[perm[r]] = r;
|
|
// Provide hints on capacity of pointers and indices.
|
|
// TODO: needs fine-tuning based on sparsity
|
|
for (uint64_t r = 0, s = 1; r < rank; r++) {
|
|
s *= sizes[r];
|
|
if (sparsity[r] == kCompressed) {
|
|
pointers[r].reserve(s + 1);
|
|
indices[r].reserve(s);
|
|
s = 1;
|
|
} else {
|
|
assert(sparsity[r] == kDense && "singleton not yet supported");
|
|
}
|
|
}
|
|
// Prepare sparse pointer structures for all dimensions.
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
if (sparsity[r] == kCompressed)
|
|
pointers[r].push_back(0);
|
|
// Then assign contents from coordinate scheme tensor if provided.
|
|
if (tensor) {
|
|
uint64_t nnz = tensor->getElements().size();
|
|
values.reserve(nnz);
|
|
fromCOO(tensor, sparsity, 0, nnz, 0);
|
|
}
|
|
}
|
|
|
|
virtual ~SparseTensorStorage() {}
|
|
|
|
/// Get the rank of the tensor.
|
|
uint64_t getRank() const { return sizes.size(); }
|
|
|
|
/// Get the size in the given dimension of the tensor.
|
|
uint64_t getDimSize(uint64_t d) override {
|
|
assert(d < getRank());
|
|
return sizes[d];
|
|
}
|
|
|
|
// Partially specialize these three methods based on template types.
|
|
void getPointers(std::vector<P> **out, uint64_t d) override {
|
|
assert(d < getRank());
|
|
*out = &pointers[d];
|
|
}
|
|
void getIndices(std::vector<I> **out, uint64_t d) override {
|
|
assert(d < getRank());
|
|
*out = &indices[d];
|
|
}
|
|
void getValues(std::vector<V> **out) override { *out = &values; }
|
|
|
|
/// Returns this sparse tensor storage scheme as a new memory-resident
|
|
/// sparse tensor in coordinate scheme with the given dimension order.
|
|
SparseTensorCOO<V> *toCOO(const uint64_t *perm) {
|
|
// Restore original order of the dimension sizes and allocate coordinate
|
|
// scheme with desired new ordering specified in perm.
|
|
uint64_t rank = getRank();
|
|
std::vector<uint64_t> orgsz(rank);
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
orgsz[rev[r]] = sizes[r];
|
|
SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO(
|
|
rank, orgsz.data(), perm, values.size());
|
|
// Populate coordinate scheme restored from old ordering and changed with
|
|
// new ordering. Rather than applying both reorderings during the recursion,
|
|
// we compute the combine permutation in advance.
|
|
std::vector<uint64_t> reord(rank);
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
reord[r] = perm[rev[r]];
|
|
std::vector<uint64_t> idx(rank);
|
|
toCOO(tensor, reord, idx, 0, 0);
|
|
assert(tensor->getElements().size() == values.size());
|
|
return tensor;
|
|
}
|
|
|
|
/// Factory method. Constructs a sparse tensor storage scheme with the given
|
|
/// dimensions, permutation, and per-dimension dense/sparse annotations,
|
|
/// using the coordinate scheme tensor for the initial contents if provided.
|
|
/// In the latter case, the coordinate scheme must respect the same
|
|
/// permutation as is desired for the new sparse tensor storage.
|
|
static SparseTensorStorage<P, I, V> *
|
|
newSparseTensor(uint64_t rank, const uint64_t *sizes, const uint64_t *perm,
|
|
const uint8_t *sparsity, SparseTensorCOO<V> *tensor) {
|
|
SparseTensorStorage<P, I, V> *n = nullptr;
|
|
if (tensor) {
|
|
assert(tensor->getRank() == rank);
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
assert(sizes[r] == 0 || tensor->getSizes()[perm[r]] == sizes[r]);
|
|
tensor->sort(); // sort lexicographically
|
|
n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity,
|
|
tensor);
|
|
delete tensor;
|
|
} else {
|
|
std::vector<uint64_t> permsz(rank);
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
permsz[perm[r]] = sizes[r];
|
|
n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity, tensor);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
private:
|
|
/// Initializes sparse tensor storage scheme from a memory-resident sparse
|
|
/// tensor in coordinate scheme. This method prepares the pointers and
|
|
/// indices arrays under the given per-dimension dense/sparse annotations.
|
|
void fromCOO(SparseTensorCOO<V> *tensor, const uint8_t *sparsity, uint64_t lo,
|
|
uint64_t hi, uint64_t d) {
|
|
const std::vector<Element<V>> &elements = tensor->getElements();
|
|
// Once dimensions are exhausted, insert the numerical values.
|
|
if (d == getRank()) {
|
|
assert(lo >= hi || lo < elements.size());
|
|
values.push_back(lo < hi ? elements[lo].value : 0);
|
|
return;
|
|
}
|
|
assert(d < getRank());
|
|
// Visit all elements in this interval.
|
|
uint64_t full = 0;
|
|
while (lo < hi) {
|
|
assert(lo < elements.size() && hi <= elements.size());
|
|
// Find segment in interval with same index elements in this dimension.
|
|
uint64_t idx = elements[lo].indices[d];
|
|
uint64_t seg = lo + 1;
|
|
while (seg < hi && elements[seg].indices[d] == idx)
|
|
seg++;
|
|
// Handle segment in interval for sparse or dense dimension.
|
|
if (sparsity[d] == kCompressed) {
|
|
indices[d].push_back(idx);
|
|
} else {
|
|
// For dense storage we must fill in all the zero values between
|
|
// the previous element (when last we ran this for-loop) and the
|
|
// current element.
|
|
for (; full < idx; full++)
|
|
fromCOO(tensor, sparsity, 0, 0, d + 1); // pass empty
|
|
full++;
|
|
}
|
|
fromCOO(tensor, sparsity, lo, seg, d + 1);
|
|
// And move on to next segment in interval.
|
|
lo = seg;
|
|
}
|
|
// Finalize the sparse pointer structure at this dimension.
|
|
if (sparsity[d] == kCompressed) {
|
|
pointers[d].push_back(indices[d].size());
|
|
} else {
|
|
// For dense storage we must fill in all the zero values after
|
|
// the last element.
|
|
for (uint64_t sz = sizes[d]; full < sz; full++)
|
|
fromCOO(tensor, sparsity, 0, 0, d + 1); // pass empty
|
|
}
|
|
}
|
|
|
|
/// Stores the sparse tensor storage scheme into a memory-resident sparse
|
|
/// tensor in coordinate scheme.
|
|
void toCOO(SparseTensorCOO<V> *tensor, std::vector<uint64_t> &reord,
|
|
std::vector<uint64_t> &idx, uint64_t pos, uint64_t d) {
|
|
assert(d <= getRank());
|
|
if (d == getRank()) {
|
|
assert(pos < values.size());
|
|
tensor->add(idx, values[pos]);
|
|
} else if (pointers[d].empty()) {
|
|
// Dense dimension.
|
|
for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) {
|
|
idx[reord[d]] = i;
|
|
toCOO(tensor, reord, idx, off + i, d + 1);
|
|
}
|
|
} else {
|
|
// Sparse dimension.
|
|
for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) {
|
|
idx[reord[d]] = indices[d][ii];
|
|
toCOO(tensor, reord, idx, ii, d + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<uint64_t> sizes; // per-dimension sizes
|
|
std::vector<uint64_t> rev; // "reverse" permutation
|
|
std::vector<std::vector<P>> pointers;
|
|
std::vector<std::vector<I>> indices;
|
|
std::vector<V> values;
|
|
};
|
|
|
|
/// Helper to convert string to lower case.
|
|
static char *toLower(char *token) {
|
|
for (char *c = token; *c; c++)
|
|
*c = tolower(*c);
|
|
return token;
|
|
}
|
|
|
|
/// Read the MME header of a general sparse matrix of type real.
|
|
static void readMMEHeader(FILE *file, char *name, uint64_t *idata) {
|
|
char line[1025];
|
|
char header[64];
|
|
char object[64];
|
|
char format[64];
|
|
char field[64];
|
|
char symmetry[64];
|
|
// Read header line.
|
|
if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field,
|
|
symmetry) != 5) {
|
|
fprintf(stderr, "Corrupt header in %s\n", name);
|
|
exit(1);
|
|
}
|
|
// Make sure this is a general sparse matrix.
|
|
if (strcmp(toLower(header), "%%matrixmarket") ||
|
|
strcmp(toLower(object), "matrix") ||
|
|
strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") ||
|
|
strcmp(toLower(symmetry), "general")) {
|
|
fprintf(stderr,
|
|
"Cannot find a general sparse matrix with type real in %s\n", name);
|
|
exit(1);
|
|
}
|
|
// Skip comments.
|
|
while (1) {
|
|
if (!fgets(line, 1025, file)) {
|
|
fprintf(stderr, "Cannot find data in %s\n", name);
|
|
exit(1);
|
|
}
|
|
if (line[0] != '%')
|
|
break;
|
|
}
|
|
// Next line contains M N NNZ.
|
|
idata[0] = 2; // rank
|
|
if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3,
|
|
idata + 1) != 3) {
|
|
fprintf(stderr, "Cannot find size in %s\n", name);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/// Read the "extended" FROSTT header. Although not part of the documented
|
|
/// format, we assume that the file starts with optional comments followed
|
|
/// by two lines that define the rank, the number of nonzeros, and the
|
|
/// dimensions sizes (one per rank) of the sparse tensor.
|
|
static void readExtFROSTTHeader(FILE *file, char *name, uint64_t *idata) {
|
|
char line[1025];
|
|
// Skip comments.
|
|
while (1) {
|
|
if (!fgets(line, 1025, file)) {
|
|
fprintf(stderr, "Cannot find data in %s\n", name);
|
|
exit(1);
|
|
}
|
|
if (line[0] != '#')
|
|
break;
|
|
}
|
|
// Next line contains RANK and NNZ.
|
|
if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) {
|
|
fprintf(stderr, "Cannot find metadata in %s\n", name);
|
|
exit(1);
|
|
}
|
|
// Followed by a line with the dimension sizes (one per rank).
|
|
for (uint64_t r = 0; r < idata[0]; r++) {
|
|
if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) {
|
|
fprintf(stderr, "Cannot find dimension size %s\n", name);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Reads a sparse tensor with the given filename into a memory-resident
|
|
/// sparse tensor in coordinate scheme.
|
|
template <typename V>
|
|
static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank,
|
|
const uint64_t *sizes,
|
|
const uint64_t *perm) {
|
|
// Open the file.
|
|
FILE *file = fopen(filename, "r");
|
|
if (!file) {
|
|
fprintf(stderr, "Cannot find %s\n", filename);
|
|
exit(1);
|
|
}
|
|
// Perform some file format dependent set up.
|
|
uint64_t idata[512];
|
|
if (strstr(filename, ".mtx")) {
|
|
readMMEHeader(file, filename, idata);
|
|
} else if (strstr(filename, ".tns")) {
|
|
readExtFROSTTHeader(file, filename, idata);
|
|
} else {
|
|
fprintf(stderr, "Unknown format %s\n", filename);
|
|
exit(1);
|
|
}
|
|
// Prepare sparse tensor object with per-dimension sizes
|
|
// and the number of nonzeros as initial capacity.
|
|
assert(rank == idata[0] && "rank mismatch");
|
|
uint64_t nnz = idata[1];
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
assert((sizes[r] == 0 || sizes[r] == idata[2 + r]) &&
|
|
"dimension size mismatch");
|
|
SparseTensorCOO<V> *tensor =
|
|
SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz);
|
|
// Read all nonzero elements.
|
|
std::vector<uint64_t> indices(rank);
|
|
for (uint64_t k = 0; k < nnz; k++) {
|
|
uint64_t idx = -1;
|
|
for (uint64_t r = 0; r < rank; r++) {
|
|
if (fscanf(file, "%" PRIu64, &idx) != 1) {
|
|
fprintf(stderr, "Cannot find next index in %s\n", filename);
|
|
exit(1);
|
|
}
|
|
// Add 0-based index.
|
|
indices[perm[r]] = idx - 1;
|
|
}
|
|
// The external formats always store the numerical values with the type
|
|
// double, but we cast these values to the sparse tensor object type.
|
|
double value;
|
|
if (fscanf(file, "%lg\n", &value) != 1) {
|
|
fprintf(stderr, "Cannot find next value in %s\n", filename);
|
|
exit(1);
|
|
}
|
|
tensor->add(indices, value);
|
|
}
|
|
// Close the file and return tensor.
|
|
fclose(file);
|
|
return tensor;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
extern "C" {
|
|
|
|
/// This type is used in the public API at all places where MLIR expects
|
|
/// values with the built-in type "index". For now, we simply assume that
|
|
/// type is 64-bit, but targets with different "index" bit widths should link
|
|
/// with an alternatively built runtime support library.
|
|
// TODO: support such targets?
|
|
typedef uint64_t index_t;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Public API with methods that operate on MLIR buffers (memrefs) to interact
|
|
// with sparse tensors, which are only visible as opaque pointers externally.
|
|
// These methods should be used exclusively by MLIR compiler-generated code.
|
|
//
|
|
// Some macro magic is used to generate implementations for all required type
|
|
// combinations that can be called from MLIR compiler-generated code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
enum OverheadTypeEnum : uint32_t { kU64 = 1, kU32 = 2, kU16 = 3, kU8 = 4 };
|
|
|
|
enum PrimaryTypeEnum : uint32_t {
|
|
kF64 = 1,
|
|
kF32 = 2,
|
|
kI64 = 3,
|
|
kI32 = 4,
|
|
kI16 = 5,
|
|
kI8 = 6
|
|
};
|
|
|
|
enum Action : uint32_t {
|
|
kEmpty = 0,
|
|
kFromFile = 1,
|
|
kFromCOO = 2,
|
|
kEmptyCOO = 3,
|
|
kToCOO = 4
|
|
};
|
|
|
|
#define CASE(p, i, v, P, I, V) \
|
|
if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \
|
|
SparseTensorCOO<V> *tensor = nullptr; \
|
|
if (action == kFromFile) \
|
|
tensor = \
|
|
openSparseTensorCOO<V>(static_cast<char *>(ptr), rank, sizes, perm); \
|
|
else if (action == kFromCOO) \
|
|
tensor = static_cast<SparseTensorCOO<V> *>(ptr); \
|
|
else if (action == kEmptyCOO) \
|
|
return SparseTensorCOO<V>::newSparseTensorCOO(rank, sizes, perm); \
|
|
else if (action == kToCOO) \
|
|
return static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \
|
|
else \
|
|
assert(action == kEmpty); \
|
|
return SparseTensorStorage<P, I, V>::newSparseTensor(rank, sizes, perm, \
|
|
sparsity, tensor); \
|
|
}
|
|
|
|
#define IMPL1(NAME, TYPE, LIB) \
|
|
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \
|
|
assert(ref); \
|
|
assert(tensor); \
|
|
std::vector<TYPE> *v; \
|
|
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \
|
|
ref->basePtr = ref->data = v->data(); \
|
|
ref->offset = 0; \
|
|
ref->sizes[0] = v->size(); \
|
|
ref->strides[0] = 1; \
|
|
}
|
|
|
|
#define IMPL2(NAME, TYPE, LIB) \
|
|
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \
|
|
index_t d) { \
|
|
assert(ref); \
|
|
assert(tensor); \
|
|
std::vector<TYPE> *v; \
|
|
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \
|
|
ref->basePtr = ref->data = v->data(); \
|
|
ref->offset = 0; \
|
|
ref->sizes[0] = v->size(); \
|
|
ref->strides[0] = 1; \
|
|
}
|
|
|
|
#define IMPL3(NAME, TYPE) \
|
|
void *_mlir_ciface_##NAME(void *tensor, TYPE value, \
|
|
StridedMemRefType<index_t, 1> *iref, \
|
|
StridedMemRefType<index_t, 1> *pref) { \
|
|
assert(tensor); \
|
|
assert(iref); \
|
|
assert(pref); \
|
|
assert(iref->strides[0] == 1 && pref->strides[0] == 1); \
|
|
assert(iref->sizes[0] == pref->sizes[0]); \
|
|
const index_t *indx = iref->data + iref->offset; \
|
|
const index_t *perm = pref->data + pref->offset; \
|
|
uint64_t isize = iref->sizes[0]; \
|
|
std::vector<index_t> indices(isize); \
|
|
for (uint64_t r = 0; r < isize; r++) \
|
|
indices[perm[r]] = indx[r]; \
|
|
static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \
|
|
return tensor; \
|
|
}
|
|
|
|
/// Constructs a new sparse tensor. This is the "swiss army knife"
|
|
/// method for materializing sparse tensors into the computation.
|
|
///
|
|
/// action:
|
|
/// kEmpty = returns empty storage to fill later
|
|
/// kFromFile = returns storage, where ptr contains filename to read
|
|
/// kFromCOO = returns storage, where ptr contains coordinate scheme to assign
|
|
/// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO
|
|
/// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO
|
|
void *
|
|
_mlir_ciface_newSparseTensor(StridedMemRefType<uint8_t, 1> *aref, // NOLINT
|
|
StridedMemRefType<index_t, 1> *sref,
|
|
StridedMemRefType<index_t, 1> *pref,
|
|
uint32_t ptrTp, uint32_t indTp, uint32_t valTp,
|
|
uint32_t action, void *ptr) {
|
|
assert(aref && sref && pref);
|
|
assert(aref->strides[0] == 1 && sref->strides[0] == 1 &&
|
|
pref->strides[0] == 1);
|
|
assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]);
|
|
const uint8_t *sparsity = aref->data + aref->offset;
|
|
const index_t *sizes = sref->data + sref->offset;
|
|
const index_t *perm = pref->data + pref->offset;
|
|
uint64_t rank = aref->sizes[0];
|
|
|
|
// Double matrices with all combinations of overhead storage.
|
|
CASE(kU64, kU64, kF64, uint64_t, uint64_t, double);
|
|
CASE(kU64, kU32, kF64, uint64_t, uint32_t, double);
|
|
CASE(kU64, kU16, kF64, uint64_t, uint16_t, double);
|
|
CASE(kU64, kU8, kF64, uint64_t, uint8_t, double);
|
|
CASE(kU32, kU64, kF64, uint32_t, uint64_t, double);
|
|
CASE(kU32, kU32, kF64, uint32_t, uint32_t, double);
|
|
CASE(kU32, kU16, kF64, uint32_t, uint16_t, double);
|
|
CASE(kU32, kU8, kF64, uint32_t, uint8_t, double);
|
|
CASE(kU16, kU64, kF64, uint16_t, uint64_t, double);
|
|
CASE(kU16, kU32, kF64, uint16_t, uint32_t, double);
|
|
CASE(kU16, kU16, kF64, uint16_t, uint16_t, double);
|
|
CASE(kU16, kU8, kF64, uint16_t, uint8_t, double);
|
|
CASE(kU8, kU64, kF64, uint8_t, uint64_t, double);
|
|
CASE(kU8, kU32, kF64, uint8_t, uint32_t, double);
|
|
CASE(kU8, kU16, kF64, uint8_t, uint16_t, double);
|
|
CASE(kU8, kU8, kF64, uint8_t, uint8_t, double);
|
|
|
|
// Float matrices with all combinations of overhead storage.
|
|
CASE(kU64, kU64, kF32, uint64_t, uint64_t, float);
|
|
CASE(kU64, kU32, kF32, uint64_t, uint32_t, float);
|
|
CASE(kU64, kU16, kF32, uint64_t, uint16_t, float);
|
|
CASE(kU64, kU8, kF32, uint64_t, uint8_t, float);
|
|
CASE(kU32, kU64, kF32, uint32_t, uint64_t, float);
|
|
CASE(kU32, kU32, kF32, uint32_t, uint32_t, float);
|
|
CASE(kU32, kU16, kF32, uint32_t, uint16_t, float);
|
|
CASE(kU32, kU8, kF32, uint32_t, uint8_t, float);
|
|
CASE(kU16, kU64, kF32, uint16_t, uint64_t, float);
|
|
CASE(kU16, kU32, kF32, uint16_t, uint32_t, float);
|
|
CASE(kU16, kU16, kF32, uint16_t, uint16_t, float);
|
|
CASE(kU16, kU8, kF32, uint16_t, uint8_t, float);
|
|
CASE(kU8, kU64, kF32, uint8_t, uint64_t, float);
|
|
CASE(kU8, kU32, kF32, uint8_t, uint32_t, float);
|
|
CASE(kU8, kU16, kF32, uint8_t, uint16_t, float);
|
|
CASE(kU8, kU8, kF32, uint8_t, uint8_t, float);
|
|
|
|
// Integral matrices with same overhead storage.
|
|
CASE(kU64, kU64, kI64, uint64_t, uint64_t, int64_t);
|
|
CASE(kU64, kU64, kI32, uint64_t, uint64_t, int32_t);
|
|
CASE(kU64, kU64, kI16, uint64_t, uint64_t, int16_t);
|
|
CASE(kU64, kU64, kI8, uint64_t, uint64_t, int8_t);
|
|
CASE(kU32, kU32, kI32, uint32_t, uint32_t, int32_t);
|
|
CASE(kU32, kU32, kI16, uint32_t, uint32_t, int16_t);
|
|
CASE(kU32, kU32, kI8, uint32_t, uint32_t, int8_t);
|
|
CASE(kU16, kU16, kI32, uint16_t, uint16_t, int32_t);
|
|
CASE(kU16, kU16, kI16, uint16_t, uint16_t, int16_t);
|
|
CASE(kU16, kU16, kI8, uint16_t, uint16_t, int8_t);
|
|
CASE(kU8, kU8, kI32, uint8_t, uint8_t, int32_t);
|
|
CASE(kU8, kU8, kI16, uint8_t, uint8_t, int16_t);
|
|
CASE(kU8, kU8, kI8, uint8_t, uint8_t, int8_t);
|
|
|
|
// Unsupported case (add above if needed).
|
|
fputs("unsupported combination of types\n", stderr);
|
|
exit(1);
|
|
}
|
|
|
|
/// Methods that provide direct access to pointers, indices, and values.
|
|
IMPL2(sparsePointers, index_t, getPointers)
|
|
IMPL2(sparsePointers64, uint64_t, getPointers)
|
|
IMPL2(sparsePointers32, uint32_t, getPointers)
|
|
IMPL2(sparsePointers16, uint16_t, getPointers)
|
|
IMPL2(sparsePointers8, uint8_t, getPointers)
|
|
IMPL2(sparseIndices, index_t, getIndices)
|
|
IMPL2(sparseIndices64, uint64_t, getIndices)
|
|
IMPL2(sparseIndices32, uint32_t, getIndices)
|
|
IMPL2(sparseIndices16, uint16_t, getIndices)
|
|
IMPL2(sparseIndices8, uint8_t, getIndices)
|
|
IMPL1(sparseValuesF64, double, getValues)
|
|
IMPL1(sparseValuesF32, float, getValues)
|
|
IMPL1(sparseValuesI64, int64_t, getValues)
|
|
IMPL1(sparseValuesI32, int32_t, getValues)
|
|
IMPL1(sparseValuesI16, int16_t, getValues)
|
|
IMPL1(sparseValuesI8, int8_t, getValues)
|
|
|
|
/// Helper to add value to coordinate scheme, one per value type.
|
|
IMPL3(addEltF64, double)
|
|
IMPL3(addEltF32, float)
|
|
IMPL3(addEltI64, int64_t)
|
|
IMPL3(addEltI32, int32_t)
|
|
IMPL3(addEltI16, int16_t)
|
|
IMPL3(addEltI8, int8_t)
|
|
|
|
#undef CASE
|
|
#undef IMPL1
|
|
#undef IMPL2
|
|
#undef IMPL3
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Public API with methods that accept C-style data structures to interact
|
|
// with sparse tensors, which are only visible as opaque pointers externally.
|
|
// These methods can be used both by MLIR compiler-generated code as well as by
|
|
// an external runtime that wants to interact with MLIR compiler-generated code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Helper method to read a sparse tensor filename from the environment,
|
|
/// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc.
|
|
char *getTensorFilename(index_t id) {
|
|
char var[80];
|
|
sprintf(var, "TENSOR%" PRIu64, id);
|
|
char *env = getenv(var);
|
|
return env;
|
|
}
|
|
|
|
/// Returns size of sparse tensor in given dimension.
|
|
index_t sparseDimSize(void *tensor, index_t d) {
|
|
return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
|
|
}
|
|
|
|
/// Releases sparse tensor storage.
|
|
void delSparseTensor(void *tensor) {
|
|
delete static_cast<SparseTensorStorageBase *>(tensor);
|
|
}
|
|
|
|
/// Initializes sparse tensor from a COO-flavored format expressed using C-style
|
|
/// data structures. The expected parameters are:
|
|
///
|
|
/// rank: rank of tensor
|
|
/// nse: number of specified elements (usually the nonzeros)
|
|
/// shape: array with dimension size for each rank
|
|
/// values: a "nse" array with values for all specified elements
|
|
/// indices: a flat "nse x rank" array with indices for all specified elements
|
|
///
|
|
/// For example, the sparse matrix
|
|
/// | 1.0 0.0 0.0 |
|
|
/// | 0.0 5.0 3.0 |
|
|
/// can be passed as
|
|
/// rank = 2
|
|
/// nse = 3
|
|
/// shape = [2, 3]
|
|
/// values = [1.0, 5.0, 3.0]
|
|
/// indices = [ 0, 0, 1, 1, 1, 2]
|
|
//
|
|
// TODO: for now f64 tensors only, no dim ordering, all dimensions compressed
|
|
//
|
|
void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape,
|
|
double *values, uint64_t *indices) {
|
|
// Setup all-dims compressed and default ordering.
|
|
std::vector<uint8_t> sparse(rank, SparseTensorStorageBase::kCompressed);
|
|
std::vector<uint64_t> perm(rank);
|
|
std::iota(perm.begin(), perm.end(), 0);
|
|
// Convert external format to internal COO.
|
|
SparseTensorCOO<double> *tensor = SparseTensorCOO<double>::newSparseTensorCOO(
|
|
rank, shape, perm.data(), nse);
|
|
std::vector<uint64_t> idx(rank);
|
|
for (uint64_t i = 0, base = 0; i < nse; i++) {
|
|
for (uint64_t r = 0; r < rank; r++)
|
|
idx[r] = indices[base + r];
|
|
tensor->add(idx, values[i]);
|
|
base += rank;
|
|
}
|
|
// Return sparse tensor storage format as opaque pointer.
|
|
return SparseTensorStorage<uint64_t, uint64_t, double>::newSparseTensor(
|
|
rank, shape, perm.data(), sparse.data(), tensor);
|
|
}
|
|
|
|
} // extern "C"
|
|
|
|
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|