CFIPrograms' most common uses are within debug frames, but it is not their only use. For example, some assembly writers encode them by hand into .cfi_escape directives. This PR extracts printing code for them into its own files, which avoids the need for the main class to depend on DWARFUnit, sections, and similar. One in a series of NFC DebugInfo/DWARF refactoring changes to layer it more cleanly, so that binary CFI parsing can be used from low-level code, (such as byte strings created via .cfi_escape) without circular dependencies. The final goal is to make a more limited dwarf library usable from lower-level code. More information can be found at https://discourse.llvm.org/t/rfc-debuginfo-dwarf-refactor-into-to-lower-and-higher-level-libraries/86665
The LLVM Compiler Infrastructure
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting in touch
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.