Files
clang-p2996/lldb/source/Plugins/ObjectFile/Minidump/MinidumpFileBuilder.cpp
Jacob Lalonde e98d1380a0 [NFC][LLDB] Clean up comments/some code in MinidumpFileBuilder (#134961)
I've recently been working on Minidump File Builder again, and some of
the comments are out of date, and many of the includes are no longer
used. This patch removes unneeded includes and rephrases some comments
to better fit with the current state after the read write chunks pr.
2025-04-09 10:55:30 -07:00

1276 lines
47 KiB
C++

//===-- MinidumpFileBuilder.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MinidumpFileBuilder.h"
#include "Plugins/Process/minidump/RegisterContextMinidump_ARM64.h"
#include "Plugins/Process/minidump/RegisterContextMinidump_x86_64.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleList.h"
#include "lldb/Core/Section.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/ThreadList.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RangeMap.h"
#include "lldb/Utility/RegisterValue.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Minidump.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/TargetParser/Triple.h"
#include "Plugins/Process/minidump/MinidumpTypes.h"
#include "lldb/lldb-enumerations.h"
#include "lldb/lldb-forward.h"
#include "lldb/lldb-types.h"
#include <algorithm>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <utility>
using namespace lldb;
using namespace lldb_private;
using namespace llvm::minidump;
Status MinidumpFileBuilder::AddHeaderAndCalculateDirectories() {
// First set the offset on the file, and on the bytes saved
m_saved_data_size = HEADER_SIZE;
// We know we will have at least Misc, SystemInfo, Modules, and ThreadList
// (corresponding memory list for stacks), an additional memory list for
// non-stacks, and a stream to mark this minidump was generated by LLDB.
lldb_private::Target &target = m_process_sp->GetTarget();
m_expected_directories = 6;
// Check if OS is linux and reserve directory space for all linux specific
// breakpad extension directories.
if (target.GetArchitecture().GetTriple().getOS() ==
llvm::Triple::OSType::Linux)
m_expected_directories += 9;
// Go through all of the threads and check for exceptions.
std::vector<lldb::ThreadSP> threads =
m_process_sp->CalculateCoreFileThreadList(m_save_core_options);
for (const ThreadSP &thread_sp : threads) {
StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
if (stop_info_sp) {
const StopReason &stop_reason = stop_info_sp->GetStopReason();
if (stop_reason != lldb::eStopReasonInvalid)
m_expected_directories++;
}
}
m_saved_data_size +=
m_expected_directories * sizeof(llvm::minidump::Directory);
Status error;
offset_t new_offset = m_core_file->SeekFromStart(m_saved_data_size);
if (new_offset != m_saved_data_size)
error = Status::FromErrorStringWithFormat(
"Failed to fill in header and directory "
"sections. Written / Expected (%" PRIx64 " / %" PRIx64 ")",
new_offset, m_saved_data_size);
if (error.Fail())
return error;
return AddLLDBGeneratedStream();
}
Status MinidumpFileBuilder::AddDirectory(StreamType type,
uint64_t stream_size) {
// We explicitly cast type, an 32b enum, to uint32_t to avoid warnings.
Status error;
if (GetCurrentDataEndOffset() > UINT32_MAX) {
error = Status::FromErrorStringWithFormat(
"Unable to add directory for stream type "
"%x, offset is greater then 32 bit limit.",
(uint32_t)type);
return error;
}
if (m_directories.size() + 1 > m_expected_directories) {
error = Status::FromErrorStringWithFormat(
"Unable to add directory for stream type %x, exceeded expected number "
"of directories %zu.",
(uint32_t)type, m_expected_directories);
return error;
}
LocationDescriptor loc;
loc.DataSize = static_cast<llvm::support::ulittle32_t>(stream_size);
// Stream will begin at the current end of data section
loc.RVA = static_cast<llvm::support::ulittle32_t>(GetCurrentDataEndOffset());
Directory dir;
dir.Type = static_cast<llvm::support::little_t<StreamType>>(type);
dir.Location = loc;
m_directories.push_back(dir);
return error;
}
Status MinidumpFileBuilder::AddLLDBGeneratedStream() {
Status error;
StreamType type = StreamType::LLDBGenerated;
return AddDirectory(type, 0);
}
Status MinidumpFileBuilder::AddSystemInfo() {
Status error;
const llvm::Triple &target_triple =
m_process_sp->GetTarget().GetArchitecture().GetTriple();
error =
AddDirectory(StreamType::SystemInfo, sizeof(llvm::minidump::SystemInfo));
if (error.Fail())
return error;
llvm::minidump::ProcessorArchitecture arch;
switch (target_triple.getArch()) {
case llvm::Triple::ArchType::x86_64:
arch = ProcessorArchitecture::AMD64;
break;
case llvm::Triple::ArchType::x86:
arch = ProcessorArchitecture::X86;
break;
case llvm::Triple::ArchType::arm:
arch = ProcessorArchitecture::ARM;
break;
case llvm::Triple::ArchType::aarch64:
arch = ProcessorArchitecture::ARM64;
break;
case llvm::Triple::ArchType::mips64:
case llvm::Triple::ArchType::mips64el:
case llvm::Triple::ArchType::mips:
case llvm::Triple::ArchType::mipsel:
arch = ProcessorArchitecture::MIPS;
break;
case llvm::Triple::ArchType::ppc64:
case llvm::Triple::ArchType::ppc:
case llvm::Triple::ArchType::ppc64le:
arch = ProcessorArchitecture::PPC;
break;
default:
error = Status::FromErrorStringWithFormat(
"Architecture %s not supported.",
target_triple.getArchName().str().c_str());
return error;
};
llvm::support::little_t<OSPlatform> platform_id;
switch (target_triple.getOS()) {
case llvm::Triple::OSType::Linux:
if (target_triple.getEnvironment() ==
llvm::Triple::EnvironmentType::Android)
platform_id = OSPlatform::Android;
else
platform_id = OSPlatform::Linux;
break;
case llvm::Triple::OSType::Win32:
platform_id = OSPlatform::Win32NT;
break;
case llvm::Triple::OSType::MacOSX:
platform_id = OSPlatform::MacOSX;
break;
case llvm::Triple::OSType::IOS:
platform_id = OSPlatform::IOS;
break;
default:
error = Status::FromErrorStringWithFormat(
"OS %s not supported.", target_triple.getOSName().str().c_str());
return error;
};
llvm::minidump::SystemInfo sys_info;
sys_info.ProcessorArch =
static_cast<llvm::support::little_t<ProcessorArchitecture>>(arch);
// Global offset to beginning of a csd_string in a data section
sys_info.CSDVersionRVA = static_cast<llvm::support::ulittle32_t>(
GetCurrentDataEndOffset() + sizeof(llvm::minidump::SystemInfo));
sys_info.PlatformId = platform_id;
m_data.AppendData(&sys_info, sizeof(llvm::minidump::SystemInfo));
std::string csd_string;
error = WriteString(csd_string, &m_data);
if (error.Fail()) {
error =
Status::FromErrorString("Unable to convert the csd string to UTF16.");
return error;
}
return error;
}
Status WriteString(const std::string &to_write,
lldb_private::DataBufferHeap *buffer) {
Status error;
// let the StringRef eat also null termination char
llvm::StringRef to_write_ref(to_write.c_str(), to_write.size() + 1);
llvm::SmallVector<llvm::UTF16, 128> to_write_utf16;
bool converted = convertUTF8ToUTF16String(to_write_ref, to_write_utf16);
if (!converted) {
error = Status::FromErrorStringWithFormat(
"Unable to convert the string to UTF16. Failed to convert %s",
to_write.c_str());
return error;
}
// size of the UTF16 string should be written without the null termination
// character that is stored in 2 bytes
llvm::support::ulittle32_t to_write_size(to_write_utf16.size_in_bytes() - 2);
buffer->AppendData(&to_write_size, sizeof(llvm::support::ulittle32_t));
buffer->AppendData(to_write_utf16.data(), to_write_utf16.size_in_bytes());
return error;
}
llvm::Expected<uint64_t> getModuleFileSize(Target &target,
const ModuleSP &mod) {
// JIT module has the same vm and file size.
uint64_t SizeOfImage = 0;
if (mod->GetObjectFile()->CalculateType() == ObjectFile::Type::eTypeJIT) {
for (const auto &section : *mod->GetObjectFile()->GetSectionList()) {
SizeOfImage += section->GetByteSize();
}
return SizeOfImage;
}
SectionSP sect_sp = mod->GetObjectFile()->GetBaseAddress().GetSection();
if (!sect_sp) {
return llvm::createStringError(std::errc::operation_not_supported,
"Couldn't obtain the section information.");
}
lldb::addr_t sect_addr = sect_sp->GetLoadBaseAddress(&target);
// Use memory size since zero fill sections, like ".bss", will be smaller on
// disk.
lldb::addr_t sect_size = sect_sp->GetByteSize();
// This will usually be zero, but make sure to calculate the BaseOfImage
// offset.
const lldb::addr_t base_sect_offset =
mod->GetObjectFile()->GetBaseAddress().GetLoadAddress(&target) -
sect_addr;
SizeOfImage = sect_size - base_sect_offset;
lldb::addr_t next_sect_addr = sect_addr + sect_size;
Address sect_so_addr;
target.ResolveLoadAddress(next_sect_addr, sect_so_addr);
lldb::SectionSP next_sect_sp = sect_so_addr.GetSection();
while (next_sect_sp &&
next_sect_sp->GetLoadBaseAddress(&target) == next_sect_addr) {
sect_size = sect_sp->GetByteSize();
SizeOfImage += sect_size;
next_sect_addr += sect_size;
target.ResolveLoadAddress(next_sect_addr, sect_so_addr);
next_sect_sp = sect_so_addr.GetSection();
}
return SizeOfImage;
}
// ModuleList stream consists of a number of modules, followed by an array
// of llvm::minidump::Module's structures. Every structure informs about a
// single module. Additional data of variable length, such as module's names,
// are stored just after the ModuleList stream. The llvm::minidump::Module
// structures point to this helper data by global offset.
Status MinidumpFileBuilder::AddModuleList() {
constexpr size_t minidump_module_size = sizeof(llvm::minidump::Module);
Status error;
lldb_private::Target &target = m_process_sp->GetTarget();
const ModuleList &modules = target.GetImages();
llvm::support::ulittle32_t modules_count =
static_cast<llvm::support::ulittle32_t>(modules.GetSize());
// This helps us with getting the correct global offset in minidump
// file later, when we will be setting up offsets from the
// the llvm::minidump::Module's structures into helper data
size_t size_before = GetCurrentDataEndOffset();
// This is the size of the main part of the ModuleList stream.
// It consists of a module number and corresponding number of
// structs describing individual modules
size_t module_stream_size =
sizeof(llvm::support::ulittle32_t) + modules_count * minidump_module_size;
// Adding directory describing this stream.
error = AddDirectory(StreamType::ModuleList, module_stream_size);
if (error.Fail())
return error;
m_data.AppendData(&modules_count, sizeof(llvm::support::ulittle32_t));
// Temporary storage for the helper data (of variable length)
// as these cannot be dumped to m_data before dumping entire
// array of module structures.
DataBufferHeap helper_data;
for (size_t i = 0; i < modules_count; ++i) {
ModuleSP mod = modules.GetModuleAtIndex(i);
std::string module_name = mod->GetSpecificationDescription();
auto maybe_mod_size = getModuleFileSize(target, mod);
if (!maybe_mod_size) {
llvm::Error mod_size_err = maybe_mod_size.takeError();
llvm::handleAllErrors(std::move(mod_size_err),
[&](const llvm::ErrorInfoBase &E) {
error = Status::FromErrorStringWithFormat(
"Unable to get the size of module %s: %s.",
module_name.c_str(), E.message().c_str());
});
return error;
}
uint64_t mod_size = std::move(*maybe_mod_size);
llvm::support::ulittle32_t signature =
static_cast<llvm::support::ulittle32_t>(
static_cast<uint32_t>(minidump::CvSignature::ElfBuildId));
auto uuid = mod->GetUUID().GetBytes();
VSFixedFileInfo info;
info.Signature = static_cast<llvm::support::ulittle32_t>(0u);
info.StructVersion = static_cast<llvm::support::ulittle32_t>(0u);
info.FileVersionHigh = static_cast<llvm::support::ulittle32_t>(0u);
info.FileVersionLow = static_cast<llvm::support::ulittle32_t>(0u);
info.ProductVersionHigh = static_cast<llvm::support::ulittle32_t>(0u);
info.ProductVersionLow = static_cast<llvm::support::ulittle32_t>(0u);
info.FileFlagsMask = static_cast<llvm::support::ulittle32_t>(0u);
info.FileFlags = static_cast<llvm::support::ulittle32_t>(0u);
info.FileOS = static_cast<llvm::support::ulittle32_t>(0u);
info.FileType = static_cast<llvm::support::ulittle32_t>(0u);
info.FileSubtype = static_cast<llvm::support::ulittle32_t>(0u);
info.FileDateHigh = static_cast<llvm::support::ulittle32_t>(0u);
info.FileDateLow = static_cast<llvm::support::ulittle32_t>(0u);
LocationDescriptor ld;
ld.DataSize = static_cast<llvm::support::ulittle32_t>(0u);
ld.RVA = static_cast<llvm::support::ulittle32_t>(0u);
// Setting up LocationDescriptor for uuid string. The global offset into
// minidump file is calculated.
LocationDescriptor ld_cv;
ld_cv.DataSize = static_cast<llvm::support::ulittle32_t>(
sizeof(llvm::support::ulittle32_t) + uuid.size());
ld_cv.RVA = static_cast<llvm::support::ulittle32_t>(
size_before + module_stream_size + helper_data.GetByteSize());
helper_data.AppendData(&signature, sizeof(llvm::support::ulittle32_t));
helper_data.AppendData(uuid.begin(), uuid.size());
llvm::minidump::Module m;
m.BaseOfImage = static_cast<llvm::support::ulittle64_t>(
mod->GetObjectFile()->GetBaseAddress().GetLoadAddress(&target));
m.SizeOfImage = static_cast<llvm::support::ulittle32_t>(mod_size);
m.Checksum = static_cast<llvm::support::ulittle32_t>(0);
m.TimeDateStamp =
static_cast<llvm::support::ulittle32_t>(std::time(nullptr));
m.ModuleNameRVA = static_cast<llvm::support::ulittle32_t>(
size_before + module_stream_size + helper_data.GetByteSize());
m.VersionInfo = info;
m.CvRecord = ld_cv;
m.MiscRecord = ld;
error = WriteString(module_name, &helper_data);
if (error.Fail())
return error;
m_data.AppendData(&m, sizeof(llvm::minidump::Module));
}
m_data.AppendData(helper_data.GetBytes(), helper_data.GetByteSize());
return error;
}
uint16_t read_register_u16_raw(RegisterContext *reg_ctx,
llvm::StringRef reg_name) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name);
if (!reg_info)
return 0;
lldb_private::RegisterValue reg_value;
bool success = reg_ctx->ReadRegister(reg_info, reg_value);
if (!success)
return 0;
return reg_value.GetAsUInt16();
}
uint32_t read_register_u32_raw(RegisterContext *reg_ctx,
llvm::StringRef reg_name) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name);
if (!reg_info)
return 0;
lldb_private::RegisterValue reg_value;
bool success = reg_ctx->ReadRegister(reg_info, reg_value);
if (!success)
return 0;
return reg_value.GetAsUInt32();
}
uint64_t read_register_u64_raw(RegisterContext *reg_ctx,
llvm::StringRef reg_name) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name);
if (!reg_info)
return 0;
lldb_private::RegisterValue reg_value;
bool success = reg_ctx->ReadRegister(reg_info, reg_value);
if (!success)
return 0;
return reg_value.GetAsUInt64();
}
llvm::support::ulittle16_t read_register_u16(RegisterContext *reg_ctx,
llvm::StringRef reg_name) {
return static_cast<llvm::support::ulittle16_t>(
read_register_u16_raw(reg_ctx, reg_name));
}
llvm::support::ulittle32_t read_register_u32(RegisterContext *reg_ctx,
llvm::StringRef reg_name) {
return static_cast<llvm::support::ulittle32_t>(
read_register_u32_raw(reg_ctx, reg_name));
}
llvm::support::ulittle64_t read_register_u64(RegisterContext *reg_ctx,
llvm::StringRef reg_name) {
return static_cast<llvm::support::ulittle64_t>(
read_register_u64_raw(reg_ctx, reg_name));
}
void read_register_u128(RegisterContext *reg_ctx, llvm::StringRef reg_name,
uint8_t *dst) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(reg_name);
if (reg_info) {
lldb_private::RegisterValue reg_value;
if (reg_ctx->ReadRegister(reg_info, reg_value)) {
Status error;
uint32_t bytes_copied = reg_value.GetAsMemoryData(
*reg_info, dst, 16, lldb::ByteOrder::eByteOrderLittle, error);
if (bytes_copied == 16)
return;
}
}
// If anything goes wrong, then zero out the register value.
memset(dst, 0, 16);
}
lldb_private::minidump::MinidumpContext_x86_64
GetThreadContext_x86_64(RegisterContext *reg_ctx) {
lldb_private::minidump::MinidumpContext_x86_64 thread_context = {};
thread_context.p1_home = {};
thread_context.context_flags = static_cast<uint32_t>(
lldb_private::minidump::MinidumpContext_x86_64_Flags::x86_64_Flag |
lldb_private::minidump::MinidumpContext_x86_64_Flags::Control |
lldb_private::minidump::MinidumpContext_x86_64_Flags::Segments |
lldb_private::minidump::MinidumpContext_x86_64_Flags::Integer |
lldb_private::minidump::MinidumpContext_x86_64_Flags::LLDBSpecific);
thread_context.rax = read_register_u64(reg_ctx, "rax");
thread_context.rbx = read_register_u64(reg_ctx, "rbx");
thread_context.rcx = read_register_u64(reg_ctx, "rcx");
thread_context.rdx = read_register_u64(reg_ctx, "rdx");
thread_context.rdi = read_register_u64(reg_ctx, "rdi");
thread_context.rsi = read_register_u64(reg_ctx, "rsi");
thread_context.rbp = read_register_u64(reg_ctx, "rbp");
thread_context.rsp = read_register_u64(reg_ctx, "rsp");
thread_context.r8 = read_register_u64(reg_ctx, "r8");
thread_context.r9 = read_register_u64(reg_ctx, "r9");
thread_context.r10 = read_register_u64(reg_ctx, "r10");
thread_context.r11 = read_register_u64(reg_ctx, "r11");
thread_context.r12 = read_register_u64(reg_ctx, "r12");
thread_context.r13 = read_register_u64(reg_ctx, "r13");
thread_context.r14 = read_register_u64(reg_ctx, "r14");
thread_context.r15 = read_register_u64(reg_ctx, "r15");
thread_context.rip = read_register_u64(reg_ctx, "rip");
// To make our code agnostic to whatever type the register value identifies
// itself as, we read as a u64 and truncate to u32/u16 ourselves.
thread_context.eflags = read_register_u64(reg_ctx, "rflags");
thread_context.cs = read_register_u64(reg_ctx, "cs");
thread_context.fs = read_register_u64(reg_ctx, "fs");
thread_context.gs = read_register_u64(reg_ctx, "gs");
thread_context.ss = read_register_u64(reg_ctx, "ss");
thread_context.ds = read_register_u64(reg_ctx, "ds");
thread_context.fs_base = read_register_u64(reg_ctx, "fs_base");
thread_context.gs_base = read_register_u64(reg_ctx, "gs_base");
return thread_context;
}
minidump::RegisterContextMinidump_ARM64::Context
GetThreadContext_ARM64(RegisterContext *reg_ctx) {
minidump::RegisterContextMinidump_ARM64::Context thread_context = {};
thread_context.context_flags = static_cast<uint32_t>(
minidump::RegisterContextMinidump_ARM64::Flags::ARM64_Flag |
minidump::RegisterContextMinidump_ARM64::Flags::Integer |
minidump::RegisterContextMinidump_ARM64::Flags::FloatingPoint);
char reg_name[16];
for (uint32_t i = 0; i < 31; ++i) {
snprintf(reg_name, sizeof(reg_name), "x%u", i);
thread_context.x[i] = read_register_u64(reg_ctx, reg_name);
}
// Work around a bug in debugserver where "sp" on arm64 doesn't have the alt
// name set to "x31"
thread_context.x[31] = read_register_u64(reg_ctx, "sp");
thread_context.pc = read_register_u64(reg_ctx, "pc");
thread_context.cpsr = read_register_u32(reg_ctx, "cpsr");
thread_context.fpsr = read_register_u32(reg_ctx, "fpsr");
thread_context.fpcr = read_register_u32(reg_ctx, "fpcr");
for (uint32_t i = 0; i < 32; ++i) {
snprintf(reg_name, sizeof(reg_name), "v%u", i);
read_register_u128(reg_ctx, reg_name, &thread_context.v[i * 16]);
}
return thread_context;
}
class ArchThreadContexts {
llvm::Triple::ArchType m_arch;
union {
lldb_private::minidump::MinidumpContext_x86_64 x86_64;
lldb_private::minidump::RegisterContextMinidump_ARM64::Context arm64;
};
public:
ArchThreadContexts(llvm::Triple::ArchType arch) : m_arch(arch) {}
bool prepareRegisterContext(RegisterContext *reg_ctx) {
switch (m_arch) {
case llvm::Triple::ArchType::x86_64:
x86_64 = GetThreadContext_x86_64(reg_ctx);
return true;
case llvm::Triple::ArchType::aarch64:
arm64 = GetThreadContext_ARM64(reg_ctx);
return true;
default:
break;
}
return false;
}
const void *data() const { return &x86_64; }
size_t size() const {
switch (m_arch) {
case llvm::Triple::ArchType::x86_64:
return sizeof(x86_64);
case llvm::Triple::ArchType::aarch64:
return sizeof(arm64);
default:
break;
}
return 0;
}
};
Status MinidumpFileBuilder::FixThreadStacks() {
Status error;
// If we have anything in the heap flush it.
FlushBufferToDisk();
m_core_file->SeekFromStart(m_thread_list_start);
for (auto &pair : m_thread_by_range_end) {
// The thread objects will get a new memory descriptor added
// When we are emitting the memory list and then we write it here
const llvm::minidump::Thread &thread = pair.second;
size_t bytes_to_write = sizeof(llvm::minidump::Thread);
size_t bytes_written = bytes_to_write;
error = m_core_file->Write(&thread, bytes_written);
if (error.Fail() || bytes_to_write != bytes_written) {
error = Status::FromErrorStringWithFormat(
"Wrote incorrect number of bytes to minidump file. (written %zd/%zd)",
bytes_written, bytes_to_write);
return error;
}
}
return error;
}
Status MinidumpFileBuilder::AddThreadList() {
constexpr size_t minidump_thread_size = sizeof(llvm::minidump::Thread);
std::vector<ThreadSP> thread_list =
m_process_sp->CalculateCoreFileThreadList(m_save_core_options);
// size of the entire thread stream consists of:
// number of threads and threads array
size_t thread_stream_size = sizeof(llvm::support::ulittle32_t) +
thread_list.size() * minidump_thread_size;
// save for the ability to set up RVA
size_t size_before = GetCurrentDataEndOffset();
Status error;
error = AddDirectory(StreamType::ThreadList, thread_stream_size);
if (error.Fail())
return error;
llvm::support::ulittle32_t thread_count =
static_cast<llvm::support::ulittle32_t>(thread_list.size());
m_data.AppendData(&thread_count, sizeof(llvm::support::ulittle32_t));
// Take the offset after the thread count.
m_thread_list_start = GetCurrentDataEndOffset();
DataBufferHeap helper_data;
Log *log = GetLog(LLDBLog::Object);
for (const ThreadSP &thread_sp : thread_list) {
RegisterContextSP reg_ctx_sp(thread_sp->GetRegisterContext());
if (!reg_ctx_sp) {
error = Status::FromErrorString("Unable to get the register context.");
return error;
}
RegisterContext *reg_ctx = reg_ctx_sp.get();
Target &target = m_process_sp->GetTarget();
const ArchSpec &arch = target.GetArchitecture();
ArchThreadContexts thread_context(arch.GetMachine());
if (!thread_context.prepareRegisterContext(reg_ctx)) {
error = Status::FromErrorStringWithFormat(
"architecture %s not supported.",
arch.GetTriple().getArchName().str().c_str());
return error;
}
uint64_t sp = reg_ctx->GetSP();
MemoryRegionInfo sp_region;
m_process_sp->GetMemoryRegionInfo(sp, sp_region);
// Emit a blank descriptor
MemoryDescriptor stack;
LocationDescriptor empty_label;
empty_label.DataSize = 0;
empty_label.RVA = 0;
stack.Memory = empty_label;
stack.StartOfMemoryRange = 0;
LocationDescriptor thread_context_memory_locator;
thread_context_memory_locator.DataSize =
static_cast<llvm::support::ulittle32_t>(thread_context.size());
thread_context_memory_locator.RVA = static_cast<llvm::support::ulittle32_t>(
size_before + thread_stream_size + helper_data.GetByteSize());
// Cache thie thread context memory so we can reuse for exceptions.
m_tid_to_reg_ctx[thread_sp->GetID()] = thread_context_memory_locator;
LLDB_LOGF(log, "AddThreadList for thread %d: thread_context %zu bytes",
thread_sp->GetIndexID(), thread_context.size());
helper_data.AppendData(thread_context.data(), thread_context.size());
llvm::minidump::Thread t;
t.ThreadId = static_cast<llvm::support::ulittle32_t>(thread_sp->GetID());
t.SuspendCount = static_cast<llvm::support::ulittle32_t>(
(thread_sp->GetState() == StateType::eStateSuspended) ? 1 : 0);
t.PriorityClass = static_cast<llvm::support::ulittle32_t>(0);
t.Priority = static_cast<llvm::support::ulittle32_t>(0);
t.EnvironmentBlock = static_cast<llvm::support::ulittle64_t>(0);
t.Stack = stack, t.Context = thread_context_memory_locator;
// We save off the stack object so we can circle back and clean it up.
m_thread_by_range_end[sp_region.GetRange().GetRangeEnd()] = t;
m_data.AppendData(&t, sizeof(llvm::minidump::Thread));
}
LLDB_LOGF(log, "AddThreadList(): total helper_data %" PRIx64 " bytes",
helper_data.GetByteSize());
m_data.AppendData(helper_data.GetBytes(), helper_data.GetByteSize());
return Status();
}
Status MinidumpFileBuilder::AddExceptions() {
std::vector<ThreadSP> thread_list =
m_process_sp->CalculateCoreFileThreadList(m_save_core_options);
Status error;
for (const ThreadSP &thread_sp : thread_list) {
StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
// If we don't have a stop info, or if it's invalid, skip.
if (!stop_info_sp ||
stop_info_sp->GetStopReason() == lldb::eStopReasonInvalid)
continue;
constexpr size_t minidump_exception_size =
sizeof(llvm::minidump::ExceptionStream);
error = AddDirectory(StreamType::Exception, minidump_exception_size);
if (error.Fail())
return error;
RegisterContextSP reg_ctx_sp(thread_sp->GetRegisterContext());
Exception exp_record = {};
exp_record.ExceptionCode =
static_cast<llvm::support::ulittle32_t>(stop_info_sp->GetValue());
exp_record.ExceptionFlags =
static_cast<llvm::support::ulittle32_t>(Exception::LLDB_FLAG);
exp_record.ExceptionRecord = static_cast<llvm::support::ulittle64_t>(0);
exp_record.ExceptionAddress = reg_ctx_sp->GetPC();
exp_record.NumberParameters = static_cast<llvm::support::ulittle32_t>(1);
std::string description = stop_info_sp->GetDescription();
// We have 120 bytes to work with and it's unlikely description will
// overflow, but we gotta check.
memcpy(&exp_record.ExceptionInformation, description.c_str(),
std::max(description.size(), Exception::MaxParameterBytes));
exp_record.UnusedAlignment = static_cast<llvm::support::ulittle32_t>(0);
ExceptionStream exp_stream;
exp_stream.ThreadId =
static_cast<llvm::support::ulittle32_t>(thread_sp->GetID());
exp_stream.UnusedAlignment = static_cast<llvm::support::ulittle32_t>(0);
exp_stream.ExceptionRecord = exp_record;
auto Iter = m_tid_to_reg_ctx.find(thread_sp->GetID());
if (Iter != m_tid_to_reg_ctx.end()) {
exp_stream.ThreadContext = Iter->second;
} else {
exp_stream.ThreadContext.DataSize = 0;
exp_stream.ThreadContext.RVA = 0;
}
m_data.AppendData(&exp_stream, minidump_exception_size);
}
return error;
}
lldb_private::Status MinidumpFileBuilder::AddMiscInfo() {
Status error;
error = AddDirectory(StreamType::MiscInfo,
sizeof(lldb_private::minidump::MinidumpMiscInfo));
if (error.Fail())
return error;
lldb_private::minidump::MinidumpMiscInfo misc_info;
misc_info.size = static_cast<llvm::support::ulittle32_t>(
sizeof(lldb_private::minidump::MinidumpMiscInfo));
// Default set flags1 to 0, in case that we will not be able to
// get any information
misc_info.flags1 = static_cast<llvm::support::ulittle32_t>(0);
lldb_private::ProcessInstanceInfo process_info;
m_process_sp->GetProcessInfo(process_info);
if (process_info.ProcessIDIsValid()) {
// Set flags1 to reflect that PID is filled in
misc_info.flags1 =
static_cast<llvm::support::ulittle32_t>(static_cast<uint32_t>(
lldb_private::minidump::MinidumpMiscInfoFlags::ProcessID));
misc_info.process_id =
static_cast<llvm::support::ulittle32_t>(process_info.GetProcessID());
}
m_data.AppendData(&misc_info,
sizeof(lldb_private::minidump::MinidumpMiscInfo));
return error;
}
std::unique_ptr<llvm::MemoryBuffer>
getFileStreamHelper(const std::string &path) {
auto maybe_stream = llvm::MemoryBuffer::getFileAsStream(path);
if (!maybe_stream)
return nullptr;
return std::move(maybe_stream.get());
}
Status MinidumpFileBuilder::AddLinuxFileStreams() {
Status error;
// No-op if we are not on linux.
if (m_process_sp->GetTarget().GetArchitecture().GetTriple().getOS() !=
llvm::Triple::Linux)
return error;
std::vector<std::pair<StreamType, std::string>> files_with_stream_types = {
{StreamType::LinuxCPUInfo, "/proc/cpuinfo"},
{StreamType::LinuxLSBRelease, "/etc/lsb-release"},
};
lldb_private::ProcessInstanceInfo process_info;
m_process_sp->GetProcessInfo(process_info);
if (process_info.ProcessIDIsValid()) {
lldb::pid_t pid = process_info.GetProcessID();
std::string pid_str = std::to_string(pid);
files_with_stream_types.push_back(
{StreamType::LinuxProcStatus, "/proc/" + pid_str + "/status"});
files_with_stream_types.push_back(
{StreamType::LinuxCMDLine, "/proc/" + pid_str + "/cmdline"});
files_with_stream_types.push_back(
{StreamType::LinuxEnviron, "/proc/" + pid_str + "/environ"});
files_with_stream_types.push_back(
{StreamType::LinuxAuxv, "/proc/" + pid_str + "/auxv"});
files_with_stream_types.push_back(
{StreamType::LinuxMaps, "/proc/" + pid_str + "/maps"});
files_with_stream_types.push_back(
{StreamType::LinuxProcStat, "/proc/" + pid_str + "/stat"});
files_with_stream_types.push_back(
{StreamType::LinuxProcFD, "/proc/" + pid_str + "/fd"});
}
for (const auto &entry : files_with_stream_types) {
StreamType stream = entry.first;
std::string path = entry.second;
auto memory_buffer = getFileStreamHelper(path);
if (memory_buffer) {
size_t size = memory_buffer->getBufferSize();
if (size == 0)
continue;
error = AddDirectory(stream, size);
if (error.Fail())
return error;
m_data.AppendData(memory_buffer->getBufferStart(), size);
}
}
return error;
}
Status MinidumpFileBuilder::AddMemoryList() {
Status error;
// We first save the thread stacks to ensure they fit in the first UINT32_MAX
// bytes of the core file. Thread structures in minidump files can only use
// 32 bit memory descriptiors, so we emit them first to ensure the memory is
// in accessible with a 32 bit offset.
std::vector<CoreFileMemoryRange> ranges_32;
std::vector<CoreFileMemoryRange> ranges_64;
CoreFileMemoryRanges all_core_memory_ranges;
error = m_process_sp->CalculateCoreFileSaveRanges(m_save_core_options,
all_core_memory_ranges);
if (error.Fail())
return error;
lldb_private::Progress progress("Saving Minidump File", "",
all_core_memory_ranges.GetSize());
std::vector<CoreFileMemoryRange> all_core_memory_vec;
// Extract all the data into just a vector of data. So we can mutate this in
// place.
for (const auto &core_range : all_core_memory_ranges)
all_core_memory_vec.push_back(core_range.data);
// Start by saving all of the stacks and ensuring they fit under the 32b
// limit.
uint64_t total_size = GetCurrentDataEndOffset();
auto iterator = all_core_memory_vec.begin();
while (iterator != all_core_memory_vec.end()) {
if (m_thread_by_range_end.count(iterator->range.end()) > 0) {
// We don't save stacks twice.
ranges_32.push_back(*iterator);
total_size +=
iterator->range.size() + sizeof(llvm::minidump::MemoryDescriptor);
iterator = all_core_memory_vec.erase(iterator);
} else {
iterator++;
}
}
if (total_size >= UINT32_MAX) {
error = Status::FromErrorStringWithFormat(
"Unable to write minidump. Stack memory "
"exceeds 32b limit. (Num Stacks %zu)",
ranges_32.size());
return error;
}
// After saving the stacks, we start packing as much as we can into 32b.
// We apply a generous padding here so that the Directory, MemoryList and
// Memory64List sections all begin in 32b addressable space.
// Then anything overflow extends into 64b addressable space.
// all_core_memory_vec will either contain all stack regions at this point,
// or be empty if it's a stack only minidump.
if (!all_core_memory_vec.empty())
total_size += 256 + (all_core_memory_vec.size() *
sizeof(llvm::minidump::MemoryDescriptor_64));
for (const auto &core_range : all_core_memory_vec) {
const addr_t range_size = core_range.range.size();
// We don't need to check for stacks here because we already removed them
// from all_core_memory_ranges.
if (total_size + range_size < UINT32_MAX) {
ranges_32.push_back(core_range);
total_size += range_size;
} else {
ranges_64.push_back(core_range);
}
}
error = AddMemoryList_32(ranges_32, progress);
if (error.Fail())
return error;
// Add the remaining memory as a 64b range.
if (!ranges_64.empty()) {
error = AddMemoryList_64(ranges_64, progress);
if (error.Fail())
return error;
}
return FixThreadStacks();
}
Status MinidumpFileBuilder::DumpHeader() const {
// write header
llvm::minidump::Header header;
header.Signature = static_cast<llvm::support::ulittle32_t>(
llvm::minidump::Header::MagicSignature);
header.Version = static_cast<llvm::support::ulittle32_t>(
llvm::minidump::Header::MagicVersion);
header.NumberOfStreams =
static_cast<llvm::support::ulittle32_t>(m_directories.size());
// We write the directories right after the header.
header.StreamDirectoryRVA =
static_cast<llvm::support::ulittle32_t>(HEADER_SIZE);
header.Checksum = static_cast<llvm::support::ulittle32_t>(
0u); // not used in most of the writers
header.TimeDateStamp =
static_cast<llvm::support::ulittle32_t>(std::time(nullptr));
header.Flags =
static_cast<llvm::support::ulittle64_t>(0u); // minidump normal flag
Status error;
size_t bytes_written;
m_core_file->SeekFromStart(0);
bytes_written = HEADER_SIZE;
error = m_core_file->Write(&header, bytes_written);
if (error.Fail() || bytes_written != HEADER_SIZE) {
if (bytes_written != HEADER_SIZE)
error = Status::FromErrorStringWithFormat(
"Unable to write the minidump header (written %zd/%zd)",
bytes_written, HEADER_SIZE);
return error;
}
return error;
}
offset_t MinidumpFileBuilder::GetCurrentDataEndOffset() const {
return m_data.GetByteSize() + m_saved_data_size;
}
Status MinidumpFileBuilder::DumpDirectories() const {
Status error;
size_t bytes_written;
m_core_file->SeekFromStart(HEADER_SIZE);
for (const Directory &dir : m_directories) {
bytes_written = DIRECTORY_SIZE;
error = m_core_file->Write(&dir, bytes_written);
if (error.Fail() || bytes_written != DIRECTORY_SIZE) {
if (bytes_written != DIRECTORY_SIZE)
error = Status::FromErrorStringWithFormat(
"unable to write the directory (written %zd/%zd)", bytes_written,
DIRECTORY_SIZE);
return error;
}
}
return error;
}
Status MinidumpFileBuilder::ReadWriteMemoryInChunks(
lldb_private::DataBufferHeap &data_buffer,
const lldb_private::CoreFileMemoryRange &range, uint64_t &bytes_read) {
const lldb::addr_t addr = range.range.start();
const lldb::addr_t size = range.range.size();
Log *log = GetLog(LLDBLog::Object);
Status addDataError;
Process::ReadMemoryChunkCallback callback =
[&](Status &error, lldb::addr_t current_addr, const void *buf,
uint64_t bytes_read) -> lldb_private::IterationAction {
if (error.Fail() || bytes_read == 0) {
LLDB_LOGF(log,
"Failed to read memory region at: 0x%" PRIx64
". Bytes read: %" PRIx64 ", error: %s",
current_addr, bytes_read, error.AsCString());
// If we failed in a memory read, we would normally want to skip
// this entire region. If we had already written to the minidump
// file, we can't easily rewind that state.
//
// So if we do encounter an error while reading, we return
// immediately, any prior bytes read will still be included but
// any bytes partially read before the error are ignored.
return lldb_private::IterationAction::Stop;
}
// Write to the minidump file with the chunk potentially flushing to
// disk.
// This error will be captured by the outer scope and is considered fatal.
// If we get an error writing to disk we can't easily guarauntee that we
// won't corrupt the minidump.
addDataError = AddData(buf, bytes_read);
if (addDataError.Fail())
return lldb_private::IterationAction::Stop;
// If we have a partial read, report it, but only if the partial read
// didn't finish reading the entire region.
if (bytes_read != data_buffer.GetByteSize() &&
current_addr + bytes_read != size) {
LLDB_LOGF(log,
"Memory region at: %" PRIx64 " partiall read 0x%" PRIx64
" bytes out of %" PRIx64 " bytes.",
current_addr, bytes_read,
data_buffer.GetByteSize() - bytes_read);
// If we've read some bytes, we stop trying to read more and return
// this best effort attempt
return lldb_private::IterationAction::Stop;
}
// No problems, keep going!
return lldb_private::IterationAction::Continue;
};
bytes_read = m_process_sp->ReadMemoryInChunks(
addr, data_buffer.GetBytes(), data_buffer.GetByteSize(), size, callback);
return addDataError;
}
static uint64_t
GetLargestRangeSize(const std::vector<CoreFileMemoryRange> &ranges) {
uint64_t max_size = 0;
for (const auto &core_range : ranges)
max_size = std::max(max_size, core_range.range.size());
return max_size;
}
Status
MinidumpFileBuilder::AddMemoryList_32(std::vector<CoreFileMemoryRange> &ranges,
Progress &progress) {
std::vector<MemoryDescriptor> descriptors;
Status error;
if (ranges.size() == 0)
return error;
Log *log = GetLog(LLDBLog::Object);
size_t region_index = 0;
lldb_private::DataBufferHeap data_buffer(
std::min(GetLargestRangeSize(ranges), MAX_WRITE_CHUNK_SIZE), 0);
for (const auto &core_range : ranges) {
// Take the offset before we write.
const offset_t offset_for_data = GetCurrentDataEndOffset();
const addr_t addr = core_range.range.start();
const addr_t size = core_range.range.size();
const addr_t end = core_range.range.end();
LLDB_LOGF(log,
"AddMemoryList %zu/%zu reading memory for region "
"(%" PRIx64 " bytes) [%" PRIx64 ", %" PRIx64 ")",
region_index, ranges.size(), size, addr, addr + size);
++region_index;
progress.Increment(1, "Adding Memory Range " + core_range.Dump());
uint64_t bytes_read = 0;
error = ReadWriteMemoryInChunks(data_buffer, core_range, bytes_read);
if (error.Fail())
return error;
// If we completely failed to read this range
// we can drop the memory range
if (bytes_read == 0)
continue;
MemoryDescriptor descriptor;
descriptor.StartOfMemoryRange =
static_cast<llvm::support::ulittle64_t>(addr);
descriptor.Memory.DataSize =
static_cast<llvm::support::ulittle32_t>(bytes_read);
descriptor.Memory.RVA =
static_cast<llvm::support::ulittle32_t>(offset_for_data);
descriptors.push_back(descriptor);
if (m_thread_by_range_end.count(end) > 0)
m_thread_by_range_end[end].Stack = descriptor;
}
// Add a directory that references this list
// With a size of the number of ranges as a 32 bit num
// And then the size of all the ranges
error = AddDirectory(StreamType::MemoryList,
sizeof(llvm::minidump::MemoryListHeader) +
descriptors.size() *
sizeof(llvm::minidump::MemoryDescriptor));
if (error.Fail())
return error;
llvm::minidump::MemoryListHeader list_header;
llvm::support::ulittle32_t memory_ranges_num =
static_cast<llvm::support::ulittle32_t>(descriptors.size());
list_header.NumberOfMemoryRanges = memory_ranges_num;
m_data.AppendData(&list_header, sizeof(llvm::minidump::MemoryListHeader));
// For 32b we can get away with writing off the descriptors after the data.
// This means no cleanup loop needed.
m_data.AppendData(descriptors.data(),
descriptors.size() * sizeof(MemoryDescriptor));
return error;
}
Status
MinidumpFileBuilder::AddMemoryList_64(std::vector<CoreFileMemoryRange> &ranges,
Progress &progress) {
Status error;
if (ranges.empty())
return error;
error = AddDirectory(StreamType::Memory64List,
(sizeof(llvm::support::ulittle64_t) * 2) +
ranges.size() *
sizeof(llvm::minidump::MemoryDescriptor_64));
if (error.Fail())
return error;
llvm::minidump::Memory64ListHeader list_header;
llvm::support::ulittle64_t memory_ranges_num =
static_cast<llvm::support::ulittle64_t>(ranges.size());
list_header.NumberOfMemoryRanges = memory_ranges_num;
// Capture the starting offset for all the descriptors so we can clean them up
// if needed.
offset_t starting_offset =
GetCurrentDataEndOffset() + sizeof(llvm::support::ulittle64_t);
// The base_rva needs to start after the directories, which is right after
// this 8 byte variable.
offset_t base_rva =
starting_offset +
(ranges.size() * sizeof(llvm::minidump::MemoryDescriptor_64));
llvm::support::ulittle64_t memory_ranges_base_rva =
static_cast<llvm::support::ulittle64_t>(base_rva);
list_header.BaseRVA = memory_ranges_base_rva;
m_data.AppendData(&list_header, sizeof(llvm::minidump::Memory64ListHeader));
lldb_private::DataBufferHeap data_buffer(
std::min(GetLargestRangeSize(ranges), MAX_WRITE_CHUNK_SIZE), 0);
bool cleanup_required = false;
std::vector<MemoryDescriptor_64> descriptors;
// Enumerate the ranges and create the memory descriptors so we can append
// them first
for (const auto core_range : ranges) {
// Add the space required to store the memory descriptor
MemoryDescriptor_64 memory_desc;
memory_desc.StartOfMemoryRange =
static_cast<llvm::support::ulittle64_t>(core_range.range.start());
memory_desc.DataSize =
static_cast<llvm::support::ulittle64_t>(core_range.range.size());
descriptors.push_back(memory_desc);
// Now write this memory descriptor to the buffer.
m_data.AppendData(&memory_desc, sizeof(MemoryDescriptor_64));
}
Log *log = GetLog(LLDBLog::Object);
size_t region_index = 0;
for (const auto &core_range : ranges) {
const addr_t addr = core_range.range.start();
const addr_t size = core_range.range.size();
LLDB_LOGF(log,
"AddMemoryList_64 %zu/%zu reading memory for region "
"(%" PRIx64 "bytes) "
"[%" PRIx64 ", %" PRIx64 ")",
region_index, ranges.size(), size, addr, addr + size);
++region_index;
progress.Increment(1, "Adding Memory Range " + core_range.Dump());
uint64_t bytes_read = 0;
error = ReadWriteMemoryInChunks(data_buffer, core_range, bytes_read);
if (error.Fail())
return error;
if (bytes_read == 0) {
cleanup_required = true;
descriptors[region_index].DataSize = 0;
}
if (bytes_read != size) {
cleanup_required = true;
descriptors[region_index].DataSize = bytes_read;
}
}
// Early return if there is no cleanup needed.
if (!cleanup_required) {
return error;
} else {
// Flush to disk we can make the fixes in place.
FlushBufferToDisk();
// Fixup the descriptors that were not read correctly.
m_core_file->SeekFromStart(starting_offset);
size_t bytes_written = sizeof(MemoryDescriptor_64) * descriptors.size();
error = m_core_file->Write(descriptors.data(), bytes_written);
if (error.Fail() ||
bytes_written != sizeof(MemoryDescriptor_64) * descriptors.size()) {
error = Status::FromErrorStringWithFormat(
"unable to write the memory descriptors (written %zd/%zd)",
bytes_written, sizeof(MemoryDescriptor_64) * descriptors.size());
}
return error;
}
}
Status MinidumpFileBuilder::AddData(const void *data, uint64_t size) {
// Append the data to the buffer, if the buffer spills over, flush it to disk
m_data.AppendData(data, size);
if (m_data.GetByteSize() > MAX_WRITE_CHUNK_SIZE)
return FlushBufferToDisk();
return Status();
}
Status MinidumpFileBuilder::FlushBufferToDisk() {
Status error;
// Set the stream to it's end.
m_core_file->SeekFromStart(m_saved_data_size);
addr_t starting_size = m_data.GetByteSize();
addr_t remaining_bytes = starting_size;
offset_t offset = 0;
while (remaining_bytes > 0) {
size_t bytes_written = remaining_bytes;
// We don't care how many bytes we wrote unless we got an error
// so just decrement the remaining bytes.
error = m_core_file->Write(m_data.GetBytes() + offset, bytes_written);
if (error.Fail()) {
error = Status::FromErrorStringWithFormat(
"Wrote incorrect number of bytes to minidump file. (written %" PRIx64
"/%" PRIx64 ")",
starting_size - remaining_bytes, starting_size);
return error;
}
offset += bytes_written;
remaining_bytes -= bytes_written;
}
m_saved_data_size += starting_size;
m_data.Clear();
return error;
}
Status MinidumpFileBuilder::DumpFile() {
Status error;
// If anything is left unsaved, dump it.
error = FlushBufferToDisk();
if (error.Fail())
return error;
// Overwrite the header which we filled in earlier.
error = DumpHeader();
if (error.Fail())
return error;
// Overwrite the space saved for directories
error = DumpDirectories();
if (error.Fail())
return error;
return error;
}
void MinidumpFileBuilder::DeleteFile() noexcept {
Log *log = GetLog(LLDBLog::Object);
if (m_core_file) {
Status error = m_core_file->Close();
if (error.Fail())
LLDB_LOGF(log, "Failed to close minidump file: %s", error.AsCString());
m_core_file.reset();
}
}