Umang Yadav 7f08503a3b Introduce arith.scaling_extf and arith.scaling_truncf (#141965)
This PR adds `arith.scaling_truncf` and `arith.scaling_extf` operations
which supports the block quantization following OCP MXFP specs listed
here
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf

OCP MXFP Spec comes with reference implementation here
https://github.com/microsoft/microxcaling/tree/main

Interesting piece of reference code is this method `_quantize_mx`
7bc41952de/mx/mx_ops.py (L173).

Both `arith.scaling_truncf` and `arith.scaling_extf` are designed to be
an elementwise operation. Please see description about them in
`ArithOps.td` file for more details.
 
Internally, 

`arith.scaling_truncf` does the
`arith.truncf(arith.divf(input/(2^scale)))`. `scale` should have
necessary broadcast, clamping, normalization and NaN propagation done
before callling into `arith.scaling_truncf`.

`arith.scaling_extf` does the `arith.mulf(2^scale, input)` after taking
care of necessary data type conversions.


CC: @krzysz00 @dhernandez0 @bjacob @pashu123 @MaheshRavishankar
@tgymnich

---------

Co-authored-by: Prashant Kumar <pk5561@gmail.com>
Co-authored-by: Krzysztof Drewniak <Krzysztof.Drewniak@amd.com>
2025-06-09 13:13:31 -05:00
2025-01-28 19:48:43 -08:00
2025-04-14 16:54:14 +08:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
No description provided
Readme 2.4 GiB
Languages
LLVM 42%
C++ 31%
C 13%
Assembly 9.3%
MLIR 1.4%
Other 2.8%