Files
clang-p2996/llvm/lib/Target/AMDGPU/SIOptimizeVGPRLiveRange.cpp
Carl Ritson 2bca7d859a [AMDGPU] Graceful abort for waterfalls in SIOptimizeVGPRLiveRange
If the CFG structure of a waterfall loop is not the expected shape
then gracefully abort traversing the IR for the given loop.
This applies to nest waterfall loops which are not supported by
the VGPR live range optimizer.

Reviewed By: ruiling

Differential Revision: https://reviews.llvm.org/D123480
2022-04-12 14:15:44 +09:00

691 lines
24 KiB
C++

//===--------------------- SIOptimizeVGPRLiveRange.cpp -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass tries to remove unnecessary VGPR live ranges in divergent if-else
/// structures and waterfall loops.
///
/// When we do structurization, we usually transform an if-else into two
/// successive if-then (with a flow block to do predicate inversion). Consider a
/// simple case after structurization: A divergent value %a was defined before
/// if-else and used in both THEN (use in THEN is optional) and ELSE part:
/// bb.if:
/// %a = ...
/// ...
/// bb.then:
/// ... = op %a
/// ... // %a can be dead here
/// bb.flow:
/// ...
/// bb.else:
/// ... = %a
/// ...
/// bb.endif
///
/// As register allocator has no idea of the thread-control-flow, it will just
/// assume %a would be alive in the whole range of bb.then because of a later
/// use in bb.else. On AMDGPU architecture, the VGPR is accessed with respect
/// to exec mask. For this if-else case, the lanes active in bb.then will be
/// inactive in bb.else, and vice-versa. So we are safe to say that %a was dead
/// after the last use in bb.then until the end of the block. The reason is
/// the instructions in bb.then will only overwrite lanes that will never be
/// accessed in bb.else.
///
/// This pass aims to to tell register allocator that %a is in-fact dead,
/// through inserting a phi-node in bb.flow saying that %a is undef when coming
/// from bb.then, and then replace the uses in the bb.else with the result of
/// newly inserted phi.
///
/// Two key conditions must be met to ensure correctness:
/// 1.) The def-point should be in the same loop-level as if-else-endif to make
/// sure the second loop iteration still get correct data.
/// 2.) There should be no further uses after the IF-ELSE region.
///
///
/// Waterfall loops get inserted around instructions that use divergent values
/// but can only be executed with a uniform value. For example an indirect call
/// to a divergent address:
/// bb.start:
/// %a = ...
/// %fun = ...
/// ...
/// bb.loop:
/// call %fun (%a)
/// ... // %a can be dead here
/// loop %bb.loop
///
/// The loop block is executed multiple times, but it is run exactly once for
/// each active lane. Similar to the if-else case, the register allocator
/// assumes that %a is live throughout the loop as it is used again in the next
/// iteration. If %a is a VGPR that is unused after the loop, it does not need
/// to be live after its last use in the loop block. By inserting a phi-node at
/// the start of bb.loop that is undef when coming from bb.loop, the register
/// allocation knows that the value of %a does not need to be preserved through
/// iterations of the loop.
///
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "si-opt-vgpr-liverange"
namespace {
class SIOptimizeVGPRLiveRange : public MachineFunctionPass {
private:
const SIRegisterInfo *TRI = nullptr;
const SIInstrInfo *TII = nullptr;
LiveVariables *LV = nullptr;
MachineDominatorTree *MDT = nullptr;
const MachineLoopInfo *Loops = nullptr;
MachineRegisterInfo *MRI = nullptr;
public:
static char ID;
MachineBasicBlock *getElseTarget(MachineBasicBlock *MBB) const;
void collectElseRegionBlocks(MachineBasicBlock *Flow,
MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &) const;
void
collectCandidateRegisters(MachineBasicBlock *If, MachineBasicBlock *Flow,
MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks,
SmallVectorImpl<Register> &CandidateRegs) const;
void collectWaterfallCandidateRegisters(
MachineBasicBlock *LoopHeader, MachineBasicBlock *LoopEnd,
SmallSetVector<Register, 16> &CandidateRegs,
SmallSetVector<MachineBasicBlock *, 2> &Blocks,
SmallVectorImpl<MachineInstr *> &Instructions) const;
void findNonPHIUsesInBlock(Register Reg, MachineBasicBlock *MBB,
SmallVectorImpl<MachineInstr *> &Uses) const;
void updateLiveRangeInThenRegion(Register Reg, MachineBasicBlock *If,
MachineBasicBlock *Flow) const;
void updateLiveRangeInElseRegion(
Register Reg, Register NewReg, MachineBasicBlock *Flow,
MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks) const;
void
optimizeLiveRange(Register Reg, MachineBasicBlock *If,
MachineBasicBlock *Flow, MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks) const;
void optimizeWaterfallLiveRange(
Register Reg, MachineBasicBlock *LoopHeader,
SmallSetVector<MachineBasicBlock *, 2> &LoopBlocks,
SmallVectorImpl<MachineInstr *> &Instructions) const;
SIOptimizeVGPRLiveRange() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI Optimize VGPR LiveRange";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LiveVariables>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<LiveVariables>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::IsSSA);
}
MachineFunctionProperties getClearedProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoPHIs);
}
};
} // end anonymous namespace
// Check whether the MBB is a else flow block and get the branching target which
// is the Endif block
MachineBasicBlock *
SIOptimizeVGPRLiveRange::getElseTarget(MachineBasicBlock *MBB) const {
for (auto &BR : MBB->terminators()) {
if (BR.getOpcode() == AMDGPU::SI_ELSE)
return BR.getOperand(2).getMBB();
}
return nullptr;
}
void SIOptimizeVGPRLiveRange::collectElseRegionBlocks(
MachineBasicBlock *Flow, MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &Blocks) const {
assert(Flow != Endif);
MachineBasicBlock *MBB = Endif;
unsigned Cur = 0;
while (MBB) {
for (auto *Pred : MBB->predecessors()) {
if (Pred != Flow && !Blocks.contains(Pred))
Blocks.insert(Pred);
}
if (Cur < Blocks.size())
MBB = Blocks[Cur++];
else
MBB = nullptr;
}
LLVM_DEBUG({
dbgs() << "Found Else blocks: ";
for (auto *MBB : Blocks)
dbgs() << printMBBReference(*MBB) << ' ';
dbgs() << '\n';
});
}
/// Find the instructions(excluding phi) in \p MBB that uses the \p Reg.
void SIOptimizeVGPRLiveRange::findNonPHIUsesInBlock(
Register Reg, MachineBasicBlock *MBB,
SmallVectorImpl<MachineInstr *> &Uses) const {
for (auto &UseMI : MRI->use_nodbg_instructions(Reg)) {
if (UseMI.getParent() == MBB && !UseMI.isPHI())
Uses.push_back(&UseMI);
}
}
/// Collect the killed registers in the ELSE region which are not alive through
/// the whole THEN region.
void SIOptimizeVGPRLiveRange::collectCandidateRegisters(
MachineBasicBlock *If, MachineBasicBlock *Flow, MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks,
SmallVectorImpl<Register> &CandidateRegs) const {
SmallSet<Register, 8> KillsInElse;
for (auto *Else : ElseBlocks) {
for (auto &MI : Else->instrs()) {
if (MI.isDebugInstr())
continue;
for (auto &MO : MI.operands()) {
if (!MO.isReg() || !MO.getReg() || MO.isDef())
continue;
Register MOReg = MO.getReg();
// We can only optimize AGPR/VGPR virtual register
if (MOReg.isPhysical() || !TRI->isVectorRegister(*MRI, MOReg))
continue;
if (MO.readsReg()) {
LiveVariables::VarInfo &VI = LV->getVarInfo(MOReg);
const MachineBasicBlock *DefMBB = MRI->getVRegDef(MOReg)->getParent();
// Make sure two conditions are met:
// a.) the value is defined before/in the IF block
// b.) should be defined in the same loop-level.
if ((VI.AliveBlocks.test(If->getNumber()) || DefMBB == If) &&
Loops->getLoopFor(DefMBB) == Loops->getLoopFor(If)) {
// Check if the register is live into the endif block. If not,
// consider it killed in the else region.
LiveVariables::VarInfo &VI = LV->getVarInfo(MOReg);
if (!VI.isLiveIn(*Endif, MOReg, *MRI)) {
KillsInElse.insert(MOReg);
} else {
LLVM_DEBUG(dbgs() << "Excluding " << printReg(MOReg, TRI)
<< " as Live in Endif\n");
}
}
}
}
}
}
// Check the phis in the Endif, looking for value coming from the ELSE
// region. Make sure the phi-use is the last use.
for (auto &MI : Endif->phis()) {
for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
auto &MO = MI.getOperand(Idx);
auto *Pred = MI.getOperand(Idx + 1).getMBB();
if (Pred == Flow)
continue;
assert(ElseBlocks.contains(Pred) && "Should be from Else region\n");
if (!MO.isReg() || !MO.getReg() || MO.isUndef())
continue;
Register Reg = MO.getReg();
if (Reg.isPhysical() || !TRI->isVectorRegister(*MRI, Reg))
continue;
LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
if (VI.isLiveIn(*Endif, Reg, *MRI)) {
LLVM_DEBUG(dbgs() << "Excluding " << printReg(Reg, TRI)
<< " as Live in Endif\n");
continue;
}
// Make sure two conditions are met:
// a.) the value is defined before/in the IF block
// b.) should be defined in the same loop-level.
const MachineBasicBlock *DefMBB = MRI->getVRegDef(Reg)->getParent();
if ((VI.AliveBlocks.test(If->getNumber()) || DefMBB == If) &&
Loops->getLoopFor(DefMBB) == Loops->getLoopFor(If))
KillsInElse.insert(Reg);
}
}
auto IsLiveThroughThen = [&](Register Reg) {
for (auto I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); I != E;
++I) {
if (!I->readsReg())
continue;
auto *UseMI = I->getParent();
auto *UseMBB = UseMI->getParent();
if (UseMBB == Flow || UseMBB == Endif) {
if (!UseMI->isPHI())
return true;
auto *IncomingMBB = UseMI->getOperand(I.getOperandNo() + 1).getMBB();
// The register is live through the path If->Flow or Flow->Endif.
// we should not optimize for such cases.
if ((UseMBB == Flow && IncomingMBB != If) ||
(UseMBB == Endif && IncomingMBB == Flow))
return true;
}
}
return false;
};
for (auto Reg : KillsInElse) {
if (!IsLiveThroughThen(Reg))
CandidateRegs.push_back(Reg);
}
}
/// Collect the registers used in the waterfall loop block that are defined
/// before.
void SIOptimizeVGPRLiveRange::collectWaterfallCandidateRegisters(
MachineBasicBlock *LoopHeader, MachineBasicBlock *LoopEnd,
SmallSetVector<Register, 16> &CandidateRegs,
SmallSetVector<MachineBasicBlock *, 2> &Blocks,
SmallVectorImpl<MachineInstr *> &Instructions) const {
// Collect loop instructions, potentially spanning multiple blocks
auto *MBB = LoopHeader;
for (;;) {
Blocks.insert(MBB);
for (auto &MI : *MBB) {
if (MI.isDebugInstr())
continue;
Instructions.push_back(&MI);
}
if (MBB == LoopEnd)
break;
if ((MBB != LoopHeader && MBB->pred_size() != 1) ||
(MBB == LoopHeader && MBB->pred_size() != 2) || MBB->succ_size() != 1) {
LLVM_DEBUG(dbgs() << "Unexpected edges in CFG, ignoring loop\n");
return;
}
MBB = *MBB->succ_begin();
}
for (auto *I : Instructions) {
auto &MI = *I;
for (auto &MO : MI.operands()) {
if (!MO.isReg() || !MO.getReg() || MO.isDef())
continue;
Register MOReg = MO.getReg();
// We can only optimize AGPR/VGPR virtual register
if (MOReg.isPhysical() || !TRI->isVectorRegister(*MRI, MOReg))
continue;
if (MO.readsReg()) {
MachineBasicBlock *DefMBB = MRI->getVRegDef(MOReg)->getParent();
// Make sure the value is defined before the LOOP block
if (!Blocks.contains(DefMBB) && !CandidateRegs.contains(MOReg)) {
// If the variable is used after the loop, the register coalescer will
// merge the newly created register and remove the phi node again.
// Just do nothing in that case.
LiveVariables::VarInfo &OldVarInfo = LV->getVarInfo(MOReg);
bool IsUsed = false;
for (auto *Succ : LoopEnd->successors()) {
if (!Blocks.contains(Succ) &&
OldVarInfo.isLiveIn(*Succ, MOReg, *MRI)) {
IsUsed = true;
break;
}
}
if (!IsUsed) {
LLVM_DEBUG(dbgs() << "Found candidate reg: "
<< printReg(MOReg, TRI, 0, MRI) << '\n');
CandidateRegs.insert(MOReg);
} else {
LLVM_DEBUG(dbgs() << "Reg is used after loop, ignoring: "
<< printReg(MOReg, TRI, 0, MRI) << '\n');
}
}
}
}
}
}
// Re-calculate the liveness of \p Reg in the THEN-region
void SIOptimizeVGPRLiveRange::updateLiveRangeInThenRegion(
Register Reg, MachineBasicBlock *If, MachineBasicBlock *Flow) const {
SetVector<MachineBasicBlock *> Blocks;
SmallVector<MachineBasicBlock *> WorkList({If});
// Collect all successors until we see the flow block, where we should
// reconverge.
while (!WorkList.empty()) {
auto *MBB = WorkList.pop_back_val();
for (auto *Succ : MBB->successors()) {
if (Succ != Flow && !Blocks.contains(Succ)) {
WorkList.push_back(Succ);
Blocks.insert(Succ);
}
}
}
LiveVariables::VarInfo &OldVarInfo = LV->getVarInfo(Reg);
for (MachineBasicBlock *MBB : Blocks) {
// Clear Live bit, as we will recalculate afterwards
LLVM_DEBUG(dbgs() << "Clear AliveBlock " << printMBBReference(*MBB)
<< '\n');
OldVarInfo.AliveBlocks.reset(MBB->getNumber());
}
SmallPtrSet<MachineBasicBlock *, 4> PHIIncoming;
// Get the blocks the Reg should be alive through
for (auto I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); I != E;
++I) {
auto *UseMI = I->getParent();
if (UseMI->isPHI() && I->readsReg()) {
if (Blocks.contains(UseMI->getParent()))
PHIIncoming.insert(UseMI->getOperand(I.getOperandNo() + 1).getMBB());
}
}
for (MachineBasicBlock *MBB : Blocks) {
SmallVector<MachineInstr *> Uses;
// PHI instructions has been processed before.
findNonPHIUsesInBlock(Reg, MBB, Uses);
if (Uses.size() == 1) {
LLVM_DEBUG(dbgs() << "Found one Non-PHI use in "
<< printMBBReference(*MBB) << '\n');
LV->HandleVirtRegUse(Reg, MBB, *(*Uses.begin()));
} else if (Uses.size() > 1) {
// Process the instructions in-order
LLVM_DEBUG(dbgs() << "Found " << Uses.size() << " Non-PHI uses in "
<< printMBBReference(*MBB) << '\n');
for (MachineInstr &MI : *MBB) {
if (llvm::is_contained(Uses, &MI))
LV->HandleVirtRegUse(Reg, MBB, MI);
}
}
// Mark Reg alive through the block if this is a PHI incoming block
if (PHIIncoming.contains(MBB))
LV->MarkVirtRegAliveInBlock(OldVarInfo, MRI->getVRegDef(Reg)->getParent(),
MBB);
}
// Set the isKilled flag if we get new Kills in the THEN region.
for (auto *MI : OldVarInfo.Kills) {
if (Blocks.contains(MI->getParent()))
MI->addRegisterKilled(Reg, TRI);
}
}
void SIOptimizeVGPRLiveRange::updateLiveRangeInElseRegion(
Register Reg, Register NewReg, MachineBasicBlock *Flow,
MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks) const {
LiveVariables::VarInfo &NewVarInfo = LV->getVarInfo(NewReg);
LiveVariables::VarInfo &OldVarInfo = LV->getVarInfo(Reg);
// Transfer aliveBlocks from Reg to NewReg
for (auto *MBB : ElseBlocks) {
unsigned BBNum = MBB->getNumber();
if (OldVarInfo.AliveBlocks.test(BBNum)) {
NewVarInfo.AliveBlocks.set(BBNum);
LLVM_DEBUG(dbgs() << "Removing AliveBlock " << printMBBReference(*MBB)
<< '\n');
OldVarInfo.AliveBlocks.reset(BBNum);
}
}
// Transfer the possible Kills in ElseBlocks from Reg to NewReg
auto I = OldVarInfo.Kills.begin();
while (I != OldVarInfo.Kills.end()) {
if (ElseBlocks.contains((*I)->getParent())) {
NewVarInfo.Kills.push_back(*I);
I = OldVarInfo.Kills.erase(I);
} else {
++I;
}
}
}
void SIOptimizeVGPRLiveRange::optimizeLiveRange(
Register Reg, MachineBasicBlock *If, MachineBasicBlock *Flow,
MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks) const {
// Insert a new PHI, marking the value from the THEN region being
// undef.
LLVM_DEBUG(dbgs() << "Optimizing " << printReg(Reg, TRI) << '\n');
const auto *RC = MRI->getRegClass(Reg);
Register NewReg = MRI->createVirtualRegister(RC);
Register UndefReg = MRI->createVirtualRegister(RC);
MachineInstrBuilder PHI = BuildMI(*Flow, Flow->getFirstNonPHI(), DebugLoc(),
TII->get(TargetOpcode::PHI), NewReg);
for (auto *Pred : Flow->predecessors()) {
if (Pred == If)
PHI.addReg(Reg).addMBB(Pred);
else
PHI.addReg(UndefReg, RegState::Undef).addMBB(Pred);
}
// Replace all uses in the ELSE region or the PHIs in ENDIF block
// Use early increment range because setReg() will update the linked list.
for (auto &O : make_early_inc_range(MRI->use_operands(Reg))) {
auto *UseMI = O.getParent();
auto *UseBlock = UseMI->getParent();
// Replace uses in Endif block
if (UseBlock == Endif) {
assert(UseMI->isPHI() && "Uses should be PHI in Endif block");
O.setReg(NewReg);
continue;
}
// Replace uses in Else region
if (ElseBlocks.contains(UseBlock))
O.setReg(NewReg);
}
// The optimized Reg is not alive through Flow blocks anymore.
LiveVariables::VarInfo &OldVarInfo = LV->getVarInfo(Reg);
OldVarInfo.AliveBlocks.reset(Flow->getNumber());
updateLiveRangeInElseRegion(Reg, NewReg, Flow, Endif, ElseBlocks);
updateLiveRangeInThenRegion(Reg, If, Flow);
}
void SIOptimizeVGPRLiveRange::optimizeWaterfallLiveRange(
Register Reg, MachineBasicBlock *LoopHeader,
SmallSetVector<MachineBasicBlock *, 2> &Blocks,
SmallVectorImpl<MachineInstr *> &Instructions) const {
// Insert a new PHI, marking the value from the last loop iteration undef.
LLVM_DEBUG(dbgs() << "Optimizing " << printReg(Reg, TRI) << '\n');
const auto *RC = MRI->getRegClass(Reg);
Register NewReg = MRI->createVirtualRegister(RC);
Register UndefReg = MRI->createVirtualRegister(RC);
// Replace all uses in the LOOP region
// Use early increment range because setReg() will update the linked list.
for (auto &O : make_early_inc_range(MRI->use_operands(Reg))) {
auto *UseMI = O.getParent();
auto *UseBlock = UseMI->getParent();
// Replace uses in Loop blocks
if (Blocks.contains(UseBlock))
O.setReg(NewReg);
}
MachineInstrBuilder PHI =
BuildMI(*LoopHeader, LoopHeader->getFirstNonPHI(), DebugLoc(),
TII->get(TargetOpcode::PHI), NewReg);
for (auto *Pred : LoopHeader->predecessors()) {
if (Blocks.contains(Pred))
PHI.addReg(UndefReg, RegState::Undef).addMBB(Pred);
else
PHI.addReg(Reg).addMBB(Pred);
}
LiveVariables::VarInfo &NewVarInfo = LV->getVarInfo(NewReg);
LiveVariables::VarInfo &OldVarInfo = LV->getVarInfo(Reg);
// Find last use and mark as kill
MachineInstr *Kill = nullptr;
for (auto *MI : reverse(Instructions)) {
if (MI->readsRegister(NewReg, TRI)) {
MI->addRegisterKilled(NewReg, TRI);
NewVarInfo.Kills.push_back(MI);
Kill = MI;
break;
}
}
assert(Kill && "Failed to find last usage of register in loop");
MachineBasicBlock *KillBlock = Kill->getParent();
bool PostKillBlock = false;
for (auto *Block : Blocks) {
auto BBNum = Block->getNumber();
// collectWaterfallCandidateRegisters only collects registers that are dead
// after the loop. So we know that the old reg is no longer live throughout
// the waterfall loop.
OldVarInfo.AliveBlocks.reset(BBNum);
// The new register is live up to (and including) the block that kills it.
PostKillBlock |= (Block == KillBlock);
if (PostKillBlock) {
NewVarInfo.AliveBlocks.reset(BBNum);
} else if (Block != LoopHeader) {
NewVarInfo.AliveBlocks.set(BBNum);
}
}
}
char SIOptimizeVGPRLiveRange::ID = 0;
INITIALIZE_PASS_BEGIN(SIOptimizeVGPRLiveRange, DEBUG_TYPE,
"SI Optimize VGPR LiveRange", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
INITIALIZE_PASS_END(SIOptimizeVGPRLiveRange, DEBUG_TYPE,
"SI Optimize VGPR LiveRange", false, false)
char &llvm::SIOptimizeVGPRLiveRangeID = SIOptimizeVGPRLiveRange::ID;
FunctionPass *llvm::createSIOptimizeVGPRLiveRangePass() {
return new SIOptimizeVGPRLiveRange();
}
bool SIOptimizeVGPRLiveRange::runOnMachineFunction(MachineFunction &MF) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
MDT = &getAnalysis<MachineDominatorTree>();
Loops = &getAnalysis<MachineLoopInfo>();
LV = &getAnalysis<LiveVariables>();
MRI = &MF.getRegInfo();
if (skipFunction(MF.getFunction()))
return false;
bool MadeChange = false;
// TODO: we need to think about the order of visiting the blocks to get
// optimal result for nesting if-else cases.
for (MachineBasicBlock &MBB : MF) {
for (auto &MI : MBB.terminators()) {
// Detect the if-else blocks
if (MI.getOpcode() == AMDGPU::SI_IF) {
MachineBasicBlock *IfTarget = MI.getOperand(2).getMBB();
auto *Endif = getElseTarget(IfTarget);
if (!Endif)
continue;
SmallSetVector<MachineBasicBlock *, 16> ElseBlocks;
SmallVector<Register> CandidateRegs;
LLVM_DEBUG(dbgs() << "Checking IF-ELSE-ENDIF: "
<< printMBBReference(MBB) << ' '
<< printMBBReference(*IfTarget) << ' '
<< printMBBReference(*Endif) << '\n');
// Collect all the blocks in the ELSE region
collectElseRegionBlocks(IfTarget, Endif, ElseBlocks);
// Collect the registers can be optimized
collectCandidateRegisters(&MBB, IfTarget, Endif, ElseBlocks,
CandidateRegs);
MadeChange |= !CandidateRegs.empty();
// Now we are safe to optimize.
for (auto Reg : CandidateRegs)
optimizeLiveRange(Reg, &MBB, IfTarget, Endif, ElseBlocks);
} else if (MI.getOpcode() == AMDGPU::SI_WATERFALL_LOOP) {
auto *LoopHeader = MI.getOperand(0).getMBB();
auto *LoopEnd = &MBB;
LLVM_DEBUG(dbgs() << "Checking Waterfall loop: "
<< printMBBReference(*LoopHeader) << '\n');
SmallSetVector<Register, 16> CandidateRegs;
SmallVector<MachineInstr *, 16> Instructions;
SmallSetVector<MachineBasicBlock *, 2> Blocks;
collectWaterfallCandidateRegisters(LoopHeader, LoopEnd, CandidateRegs,
Blocks, Instructions);
MadeChange |= !CandidateRegs.empty();
// Now we are safe to optimize.
for (auto Reg : CandidateRegs)
optimizeWaterfallLiveRange(Reg, LoopHeader, Blocks, Instructions);
}
}
}
return MadeChange;
}