Fixed "private field is not used" warning when compiled with clang. original commit:28d09bbbc3reverted in:fa49021c68------ This patch permits Swing Modulo Scheduling for ARM targets turns it on by default for the Cortex-M7. The t2Bcc instruction is recognized as a loop-ending branch. MachinePipeliner is extended by adding support for "unpipelineable" instructions. These instructions are those which contribute to the loop exit test; in the SMS papers they are removed before creating the dependence graph and then inserted into the final schedule of the kernel and prologues. Support for these instructions was not previously necessary because current targets supporting SMS have only supported it for hardware loop branches, which have no loop-exit-contributing instructions in the loop body. The current structure of the MachinePipeliner makes it difficult to remove/exclude these instructions from the dependence graph. Therefore, this patch leaves them in the graph, but adds a "normalization" method which moves them in the schedule to stage 0, which causes them to appear properly in kernel and prologues. It was also necessary to be more careful about boundary nodes when iterating across successors in the dependence graph because the loop exit branch is now a non-artificial successor to instructions in the graph. In additional, schedules with physical use/def pairs in the same cycle should be treated as creating an invalid schedule because the scheduling logic doesn't respect physical register dependence once scheduled to the same cycle. Reviewed By: dmgreen Differential Revision: https://reviews.llvm.org/D122672
594 lines
21 KiB
C++
594 lines
21 KiB
C++
//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMTargetMachine.h"
|
|
#include "ARM.h"
|
|
#include "ARMMacroFusion.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMTargetObjectFile.h"
|
|
#include "ARMTargetTransformInfo.h"
|
|
#include "MCTargetDesc/ARMMCTargetDesc.h"
|
|
#include "TargetInfo/ARMTargetInfo.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/ExecutionDomainFix.h"
|
|
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
|
|
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineScheduler.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegisterBankInfo.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/ARMTargetParser.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetParser.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Transforms/CFGuard.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <cassert>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
|
|
cl::desc("Inhibit optimization of S->D register accesses on A15"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
|
|
cl::desc("Run SimplifyCFG after expanding atomic operations"
|
|
" to make use of cmpxchg flow-based information"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
|
|
cl::desc("Enable ARM load/store optimization pass"),
|
|
cl::init(true));
|
|
|
|
// FIXME: Unify control over GlobalMerge.
|
|
static cl::opt<cl::boolOrDefault>
|
|
EnableGlobalMerge("arm-global-merge", cl::Hidden,
|
|
cl::desc("Enable the global merge pass"));
|
|
|
|
namespace llvm {
|
|
void initializeARMExecutionDomainFixPass(PassRegistry&);
|
|
}
|
|
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() {
|
|
// Register the target.
|
|
RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
|
|
RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
|
|
RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
|
|
RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
|
|
|
|
PassRegistry &Registry = *PassRegistry::getPassRegistry();
|
|
initializeGlobalISel(Registry);
|
|
initializeARMLoadStoreOptPass(Registry);
|
|
initializeARMPreAllocLoadStoreOptPass(Registry);
|
|
initializeARMParallelDSPPass(Registry);
|
|
initializeARMBranchTargetsPass(Registry);
|
|
initializeARMConstantIslandsPass(Registry);
|
|
initializeARMExecutionDomainFixPass(Registry);
|
|
initializeARMExpandPseudoPass(Registry);
|
|
initializeThumb2SizeReducePass(Registry);
|
|
initializeMVEVPTBlockPass(Registry);
|
|
initializeMVETPAndVPTOptimisationsPass(Registry);
|
|
initializeMVETailPredicationPass(Registry);
|
|
initializeARMLowOverheadLoopsPass(Registry);
|
|
initializeARMBlockPlacementPass(Registry);
|
|
initializeMVEGatherScatterLoweringPass(Registry);
|
|
initializeARMSLSHardeningPass(Registry);
|
|
initializeMVELaneInterleavingPass(Registry);
|
|
}
|
|
|
|
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
|
|
if (TT.isOSBinFormatMachO())
|
|
return std::make_unique<TargetLoweringObjectFileMachO>();
|
|
if (TT.isOSWindows())
|
|
return std::make_unique<TargetLoweringObjectFileCOFF>();
|
|
return std::make_unique<ARMElfTargetObjectFile>();
|
|
}
|
|
|
|
static ARMBaseTargetMachine::ARMABI
|
|
computeTargetABI(const Triple &TT, StringRef CPU,
|
|
const TargetOptions &Options) {
|
|
StringRef ABIName = Options.MCOptions.getABIName();
|
|
|
|
if (ABIName.empty())
|
|
ABIName = ARM::computeDefaultTargetABI(TT, CPU);
|
|
|
|
if (ABIName == "aapcs16")
|
|
return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
|
|
else if (ABIName.startswith("aapcs"))
|
|
return ARMBaseTargetMachine::ARM_ABI_AAPCS;
|
|
else if (ABIName.startswith("apcs"))
|
|
return ARMBaseTargetMachine::ARM_ABI_APCS;
|
|
|
|
llvm_unreachable("Unhandled/unknown ABI Name!");
|
|
return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
|
|
}
|
|
|
|
static std::string computeDataLayout(const Triple &TT, StringRef CPU,
|
|
const TargetOptions &Options,
|
|
bool isLittle) {
|
|
auto ABI = computeTargetABI(TT, CPU, Options);
|
|
std::string Ret;
|
|
|
|
if (isLittle)
|
|
// Little endian.
|
|
Ret += "e";
|
|
else
|
|
// Big endian.
|
|
Ret += "E";
|
|
|
|
Ret += DataLayout::getManglingComponent(TT);
|
|
|
|
// Pointers are 32 bits and aligned to 32 bits.
|
|
Ret += "-p:32:32";
|
|
|
|
// Function pointers are aligned to 8 bits (because the LSB stores the
|
|
// ARM/Thumb state).
|
|
Ret += "-Fi8";
|
|
|
|
// ABIs other than APCS have 64 bit integers with natural alignment.
|
|
if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
|
|
Ret += "-i64:64";
|
|
|
|
// We have 64 bits floats. The APCS ABI requires them to be aligned to 32
|
|
// bits, others to 64 bits. We always try to align to 64 bits.
|
|
if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
|
|
Ret += "-f64:32:64";
|
|
|
|
// We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
|
|
// to 64. We always ty to give them natural alignment.
|
|
if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
|
|
Ret += "-v64:32:64-v128:32:128";
|
|
else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
|
|
Ret += "-v128:64:128";
|
|
|
|
// Try to align aggregates to 32 bits (the default is 64 bits, which has no
|
|
// particular hardware support on 32-bit ARM).
|
|
Ret += "-a:0:32";
|
|
|
|
// Integer registers are 32 bits.
|
|
Ret += "-n32";
|
|
|
|
// The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
|
|
// aligned everywhere else.
|
|
if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
|
|
Ret += "-S128";
|
|
else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
|
|
Ret += "-S64";
|
|
else
|
|
Ret += "-S32";
|
|
|
|
return Ret;
|
|
}
|
|
|
|
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
|
|
Optional<Reloc::Model> RM) {
|
|
if (!RM.hasValue())
|
|
// Default relocation model on Darwin is PIC.
|
|
return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
|
|
|
|
if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
|
|
assert(TT.isOSBinFormatELF() &&
|
|
"ROPI/RWPI currently only supported for ELF");
|
|
|
|
// DynamicNoPIC is only used on darwin.
|
|
if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
|
|
return Reloc::Static;
|
|
|
|
return *RM;
|
|
}
|
|
|
|
/// Create an ARM architecture model.
|
|
///
|
|
ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool isLittle)
|
|
: LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
|
|
CPU, FS, Options, getEffectiveRelocModel(TT, RM),
|
|
getEffectiveCodeModel(CM, CodeModel::Small), OL),
|
|
TargetABI(computeTargetABI(TT, CPU, Options)),
|
|
TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
|
|
|
|
// Default to triple-appropriate float ABI
|
|
if (Options.FloatABIType == FloatABI::Default) {
|
|
if (isTargetHardFloat())
|
|
this->Options.FloatABIType = FloatABI::Hard;
|
|
else
|
|
this->Options.FloatABIType = FloatABI::Soft;
|
|
}
|
|
|
|
// Default to triple-appropriate EABI
|
|
if (Options.EABIVersion == EABI::Default ||
|
|
Options.EABIVersion == EABI::Unknown) {
|
|
// musl is compatible with glibc with regard to EABI version
|
|
if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
|
|
TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
|
|
TargetTriple.getEnvironment() == Triple::MuslEABI ||
|
|
TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
|
|
!(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
|
|
this->Options.EABIVersion = EABI::GNU;
|
|
else
|
|
this->Options.EABIVersion = EABI::EABI5;
|
|
}
|
|
|
|
if (TT.isOSBinFormatMachO()) {
|
|
this->Options.TrapUnreachable = true;
|
|
this->Options.NoTrapAfterNoreturn = true;
|
|
}
|
|
|
|
// ARM supports the debug entry values.
|
|
setSupportsDebugEntryValues(true);
|
|
|
|
initAsmInfo();
|
|
|
|
// ARM supports the MachineOutliner.
|
|
setMachineOutliner(true);
|
|
setSupportsDefaultOutlining(true);
|
|
}
|
|
|
|
ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
|
|
|
|
const ARMSubtarget *
|
|
ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
|
|
Attribute CPUAttr = F.getFnAttribute("target-cpu");
|
|
Attribute FSAttr = F.getFnAttribute("target-features");
|
|
|
|
std::string CPU =
|
|
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
|
|
std::string FS =
|
|
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
|
|
|
|
// FIXME: This is related to the code below to reset the target options,
|
|
// we need to know whether or not the soft float flag is set on the
|
|
// function before we can generate a subtarget. We also need to use
|
|
// it as a key for the subtarget since that can be the only difference
|
|
// between two functions.
|
|
bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
|
|
// If the soft float attribute is set on the function turn on the soft float
|
|
// subtarget feature.
|
|
if (SoftFloat)
|
|
FS += FS.empty() ? "+soft-float" : ",+soft-float";
|
|
|
|
// Use the optminsize to identify the subtarget, but don't use it in the
|
|
// feature string.
|
|
std::string Key = CPU + FS;
|
|
if (F.hasMinSize())
|
|
Key += "+minsize";
|
|
|
|
auto &I = SubtargetMap[Key];
|
|
if (!I) {
|
|
// This needs to be done before we create a new subtarget since any
|
|
// creation will depend on the TM and the code generation flags on the
|
|
// function that reside in TargetOptions.
|
|
resetTargetOptions(F);
|
|
I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
|
|
F.hasMinSize());
|
|
|
|
if (!I->isThumb() && !I->hasARMOps())
|
|
F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
|
|
"instructions, but the target does not support ARM mode execution.");
|
|
}
|
|
|
|
return I.get();
|
|
}
|
|
|
|
TargetTransformInfo
|
|
ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) const {
|
|
return TargetTransformInfo(ARMTTIImpl(this, F));
|
|
}
|
|
|
|
ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool JIT)
|
|
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
|
|
|
|
ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool JIT)
|
|
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
|
|
|
|
namespace {
|
|
|
|
/// ARM Code Generator Pass Configuration Options.
|
|
class ARMPassConfig : public TargetPassConfig {
|
|
public:
|
|
ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
ARMBaseTargetMachine &getARMTargetMachine() const {
|
|
return getTM<ARMBaseTargetMachine>();
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
createMachineScheduler(MachineSchedContext *C) const override {
|
|
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
|
|
// add DAG Mutations here.
|
|
const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
|
|
if (ST.hasFusion())
|
|
DAG->addMutation(createARMMacroFusionDAGMutation());
|
|
return DAG;
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
createPostMachineScheduler(MachineSchedContext *C) const override {
|
|
ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
|
|
// add DAG Mutations here.
|
|
const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
|
|
if (ST.hasFusion())
|
|
DAG->addMutation(createARMMacroFusionDAGMutation());
|
|
return DAG;
|
|
}
|
|
|
|
void addIRPasses() override;
|
|
void addCodeGenPrepare() override;
|
|
bool addPreISel() override;
|
|
bool addInstSelector() override;
|
|
bool addIRTranslator() override;
|
|
bool addLegalizeMachineIR() override;
|
|
bool addRegBankSelect() override;
|
|
bool addGlobalInstructionSelect() override;
|
|
void addPreRegAlloc() override;
|
|
void addPreSched2() override;
|
|
void addPreEmitPass() override;
|
|
void addPreEmitPass2() override;
|
|
|
|
std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
|
|
};
|
|
|
|
class ARMExecutionDomainFix : public ExecutionDomainFix {
|
|
public:
|
|
static char ID;
|
|
ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
|
|
StringRef getPassName() const override {
|
|
return "ARM Execution Domain Fix";
|
|
}
|
|
};
|
|
char ARMExecutionDomainFix::ID;
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
|
|
"ARM Execution Domain Fix", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
|
|
INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
|
|
"ARM Execution Domain Fix", false, false)
|
|
|
|
TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new ARMPassConfig(*this, PM);
|
|
}
|
|
|
|
std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
|
|
return getStandardCSEConfigForOpt(TM->getOptLevel());
|
|
}
|
|
|
|
void ARMPassConfig::addIRPasses() {
|
|
if (TM->Options.ThreadModel == ThreadModel::Single)
|
|
addPass(createLowerAtomicPass());
|
|
else
|
|
addPass(createAtomicExpandPass());
|
|
|
|
// Cmpxchg instructions are often used with a subsequent comparison to
|
|
// determine whether it succeeded. We can exploit existing control-flow in
|
|
// ldrex/strex loops to simplify this, but it needs tidying up.
|
|
if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
|
|
addPass(createCFGSimplificationPass(
|
|
SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true),
|
|
[this](const Function &F) {
|
|
const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
|
|
return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
|
|
}));
|
|
|
|
addPass(createMVEGatherScatterLoweringPass());
|
|
addPass(createMVELaneInterleavingPass());
|
|
|
|
TargetPassConfig::addIRPasses();
|
|
|
|
// Run the parallel DSP pass.
|
|
if (getOptLevel() == CodeGenOpt::Aggressive)
|
|
addPass(createARMParallelDSPPass());
|
|
|
|
// Match interleaved memory accesses to ldN/stN intrinsics.
|
|
if (TM->getOptLevel() != CodeGenOpt::None)
|
|
addPass(createInterleavedAccessPass());
|
|
|
|
// Add Control Flow Guard checks.
|
|
if (TM->getTargetTriple().isOSWindows())
|
|
addPass(createCFGuardCheckPass());
|
|
|
|
if (TM->Options.JMCInstrument)
|
|
addPass(createJMCInstrumenterPass());
|
|
}
|
|
|
|
void ARMPassConfig::addCodeGenPrepare() {
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createTypePromotionPass());
|
|
TargetPassConfig::addCodeGenPrepare();
|
|
}
|
|
|
|
bool ARMPassConfig::addPreISel() {
|
|
if ((TM->getOptLevel() != CodeGenOpt::None &&
|
|
EnableGlobalMerge == cl::BOU_UNSET) ||
|
|
EnableGlobalMerge == cl::BOU_TRUE) {
|
|
// FIXME: This is using the thumb1 only constant value for
|
|
// maximal global offset for merging globals. We may want
|
|
// to look into using the old value for non-thumb1 code of
|
|
// 4095 based on the TargetMachine, but this starts to become
|
|
// tricky when doing code gen per function.
|
|
bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
|
|
(EnableGlobalMerge == cl::BOU_UNSET);
|
|
// Merging of extern globals is enabled by default on non-Mach-O as we
|
|
// expect it to be generally either beneficial or harmless. On Mach-O it
|
|
// is disabled as we emit the .subsections_via_symbols directive which
|
|
// means that merging extern globals is not safe.
|
|
bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
|
|
addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
|
|
MergeExternalByDefault));
|
|
}
|
|
|
|
if (TM->getOptLevel() != CodeGenOpt::None) {
|
|
addPass(createHardwareLoopsPass());
|
|
addPass(createMVETailPredicationPass());
|
|
// FIXME: IR passes can delete address-taken basic blocks, deleting
|
|
// corresponding blockaddresses. ARMConstantPoolConstant holds references to
|
|
// address-taken basic blocks which can be invalidated if the function
|
|
// containing the blockaddress has already been codegen'd and the basic
|
|
// block is removed. Work around this by forcing all IR passes to run before
|
|
// any ISel takes place. We should have a more principled way of handling
|
|
// this. See D99707 for more details.
|
|
addPass(createBarrierNoopPass());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMPassConfig::addInstSelector() {
|
|
addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
|
|
return false;
|
|
}
|
|
|
|
bool ARMPassConfig::addIRTranslator() {
|
|
addPass(new IRTranslator(getOptLevel()));
|
|
return false;
|
|
}
|
|
|
|
bool ARMPassConfig::addLegalizeMachineIR() {
|
|
addPass(new Legalizer());
|
|
return false;
|
|
}
|
|
|
|
bool ARMPassConfig::addRegBankSelect() {
|
|
addPass(new RegBankSelect());
|
|
return false;
|
|
}
|
|
|
|
bool ARMPassConfig::addGlobalInstructionSelect() {
|
|
addPass(new InstructionSelect(getOptLevel()));
|
|
return false;
|
|
}
|
|
|
|
void ARMPassConfig::addPreRegAlloc() {
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
if (getOptLevel() == CodeGenOpt::Aggressive)
|
|
addPass(&MachinePipelinerID);
|
|
|
|
addPass(createMVETPAndVPTOptimisationsPass());
|
|
|
|
addPass(createMLxExpansionPass());
|
|
|
|
if (EnableARMLoadStoreOpt)
|
|
addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
|
|
|
|
if (!DisableA15SDOptimization)
|
|
addPass(createA15SDOptimizerPass());
|
|
}
|
|
}
|
|
|
|
void ARMPassConfig::addPreSched2() {
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
if (EnableARMLoadStoreOpt)
|
|
addPass(createARMLoadStoreOptimizationPass());
|
|
|
|
addPass(new ARMExecutionDomainFix());
|
|
addPass(createBreakFalseDeps());
|
|
}
|
|
|
|
// Expand some pseudo instructions into multiple instructions to allow
|
|
// proper scheduling.
|
|
addPass(createARMExpandPseudoPass());
|
|
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
// When optimising for size, always run the Thumb2SizeReduction pass before
|
|
// IfConversion. Otherwise, check whether IT blocks are restricted
|
|
// (e.g. in v8, IfConversion depends on Thumb instruction widths)
|
|
addPass(createThumb2SizeReductionPass([this](const Function &F) {
|
|
return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() ||
|
|
this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
|
|
}));
|
|
|
|
addPass(createIfConverter([](const MachineFunction &MF) {
|
|
return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
|
|
}));
|
|
}
|
|
addPass(createThumb2ITBlockPass());
|
|
|
|
// Add both scheduling passes to give the subtarget an opportunity to pick
|
|
// between them.
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(&PostMachineSchedulerID);
|
|
addPass(&PostRASchedulerID);
|
|
}
|
|
|
|
addPass(createMVEVPTBlockPass());
|
|
addPass(createARMIndirectThunks());
|
|
addPass(createARMSLSHardeningPass());
|
|
}
|
|
|
|
void ARMPassConfig::addPreEmitPass() {
|
|
addPass(createThumb2SizeReductionPass());
|
|
|
|
// Constant island pass work on unbundled instructions.
|
|
addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
|
|
return MF.getSubtarget<ARMSubtarget>().isThumb2();
|
|
}));
|
|
|
|
// Don't optimize barriers or block placement at -O0.
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(createARMBlockPlacementPass());
|
|
addPass(createARMOptimizeBarriersPass());
|
|
}
|
|
}
|
|
|
|
void ARMPassConfig::addPreEmitPass2() {
|
|
addPass(createARMBranchTargetsPass());
|
|
addPass(createARMConstantIslandPass());
|
|
addPass(createARMLowOverheadLoopsPass());
|
|
|
|
if (TM->getTargetTriple().isOSWindows()) {
|
|
// Identify valid longjmp targets for Windows Control Flow Guard.
|
|
addPass(createCFGuardLongjmpPass());
|
|
// Identify valid eh continuation targets for Windows EHCont Guard.
|
|
addPass(createEHContGuardCatchretPass());
|
|
}
|
|
}
|