Files
clang-p2996/mlir/lib/Dialect/GPU/Transforms/SubgroupIdRewriter.cpp
Alan Li 0ba1361478 [MLIR][GPU] Use arith instead of index for subgroup_id (#137843)
Trying to simplify situation by using `arith` dialect instead of `index`
in the rewriting of `gpu.subgroup_id`.
2025-04-30 09:03:24 -04:00

85 lines
3.6 KiB
C++

//===- SubgroupIdRewriter.cpp - Implementation of SubgroupId rewriting ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements in-dialect rewriting of the gpu.subgroup_id op for archs
// where:
// subgroup_id = (tid.x + dim.x * (tid.y + dim.y * tid.z)) / subgroup_size
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/Index/IR/IndexOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
using namespace mlir;
namespace {
struct GpuSubgroupIdRewriter final : OpRewritePattern<gpu::SubgroupIdOp> {
using OpRewritePattern<gpu::SubgroupIdOp>::OpRewritePattern;
LogicalResult matchAndRewrite(gpu::SubgroupIdOp op,
PatternRewriter &rewriter) const override {
// Calculation of the thread's subgroup identifier.
//
// The process involves mapping the thread's 3D identifier within its
// block (b_id.x, b_id.y, b_id.z) to a 1D linear index.
// This linearization assumes a layout where the x-dimension (w_dim.x)
// varies most rapidly (i.e., it is the innermost dimension).
//
// The formula for the linearized thread index is:
// L = tid.x + dim.x * (tid.y + (dim.y * tid.z))
//
// Subsequently, the range of linearized indices [0, N_threads-1] is
// divided into consecutive, non-overlapping segments, each representing
// a subgroup of size 'subgroup_size'.
//
// Example Partitioning (N = subgroup_size):
// | Subgroup 0 | Subgroup 1 | Subgroup 2 | ... |
// | Indices 0..N-1 | Indices N..2N-1 | Indices 2N..3N-1| ... |
//
// The subgroup identifier is obtained via integer division of the
// linearized thread index by the predefined 'subgroup_size'.
//
// subgroup_id = floor( L / subgroup_size )
// = (tid.x + dim.x * (tid.y + dim.y * tid.z)) /
// subgroup_size
Location loc = op->getLoc();
Type indexType = rewriter.getIndexType();
Value dimX = rewriter.create<gpu::BlockDimOp>(loc, gpu::Dimension::x);
Value dimY = rewriter.create<gpu::BlockDimOp>(loc, gpu::Dimension::y);
Value tidX = rewriter.create<gpu::ThreadIdOp>(loc, gpu::Dimension::x);
Value tidY = rewriter.create<gpu::ThreadIdOp>(loc, gpu::Dimension::y);
Value tidZ = rewriter.create<gpu::ThreadIdOp>(loc, gpu::Dimension::z);
Value dimYxIdZ = rewriter.create<arith::MulIOp>(loc, indexType, dimY, tidZ);
Value dimYxIdZPlusIdY =
rewriter.create<arith::AddIOp>(loc, indexType, dimYxIdZ, tidY);
Value dimYxIdZPlusIdYTimesDimX =
rewriter.create<arith::MulIOp>(loc, indexType, dimX, dimYxIdZPlusIdY);
Value IdXPlusDimYxIdZPlusIdYTimesDimX = rewriter.create<arith::AddIOp>(
loc, indexType, tidX, dimYxIdZPlusIdYTimesDimX);
Value subgroupSize = rewriter.create<gpu::SubgroupSizeOp>(
loc, rewriter.getIndexType(), /*upper_bound = */ nullptr);
Value subgroupIdOp = rewriter.create<arith::DivUIOp>(
loc, indexType, IdXPlusDimYxIdZPlusIdYTimesDimX, subgroupSize);
rewriter.replaceOp(op, {subgroupIdOp});
return success();
}
};
} // namespace
void mlir::populateGpuSubgroupIdPatterns(RewritePatternSet &patterns) {
patterns.add<GpuSubgroupIdRewriter>(patterns.getContext());
}