Files
clang-p2996/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
Lewuathe 8fa2e67979 [mlir][complex] complex.arg op to calculate the angle of complex number
Add complex.arg op which calculates the angle of complex number. The op name is inspired by the function carg in libm.

See: https://sourceware.org/newlib/libm.html#carg

Differential Revision: https://reviews.llvm.org/D128531
2022-06-27 16:45:41 +02:00

1088 lines
48 KiB
C++

//===- ComplexToStandard.cpp - conversion from Complex to Standard dialect ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ComplexToStandard/ComplexToStandard.h"
#include <memory>
#include <type_traits>
#include "../PassDetail.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
namespace {
struct AbsOpConversion : public OpConversionPattern<complex::AbsOp> {
using OpConversionPattern<complex::AbsOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = op.getType();
Value real =
rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex());
Value realSqr = rewriter.create<arith::MulFOp>(loc, real, real);
Value imagSqr = rewriter.create<arith::MulFOp>(loc, imag, imag);
Value sqNorm = rewriter.create<arith::AddFOp>(loc, realSqr, imagSqr);
rewriter.replaceOpWithNewOp<math::SqrtOp>(op, sqNorm);
return success();
}
};
// atan2(y,x) = -i * log((x + i * y)/sqrt(x**2+y**2))
struct Atan2OpConversion : public OpConversionPattern<complex::Atan2Op> {
using OpConversionPattern<complex::Atan2Op>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::Atan2Op op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = op.getType().cast<ComplexType>();
Type elementType = type.getElementType();
Value lhs = adaptor.getLhs();
Value rhs = adaptor.getRhs();
Value rhsSquared = b.create<complex::MulOp>(type, rhs, rhs);
Value lhsSquared = b.create<complex::MulOp>(type, lhs, lhs);
Value rhsSquaredPlusLhsSquared =
b.create<complex::AddOp>(type, rhsSquared, lhsSquared);
Value sqrtOfRhsSquaredPlusLhsSquared =
b.create<complex::SqrtOp>(type, rhsSquaredPlusLhsSquared);
Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value i = b.create<complex::CreateOp>(type, zero, one);
Value iTimesLhs = b.create<complex::MulOp>(i, lhs);
Value rhsPlusILhs = b.create<complex::AddOp>(rhs, iTimesLhs);
Value divResult =
b.create<complex::DivOp>(rhsPlusILhs, sqrtOfRhsSquaredPlusLhsSquared);
Value logResult = b.create<complex::LogOp>(divResult);
Value negativeOne = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, -1));
Value negativeI = b.create<complex::CreateOp>(type, zero, negativeOne);
rewriter.replaceOpWithNewOp<complex::MulOp>(op, negativeI, logResult);
return success();
}
};
template <typename ComparisonOp, arith::CmpFPredicate p>
struct ComparisonOpConversion : public OpConversionPattern<ComparisonOp> {
using OpConversionPattern<ComparisonOp>::OpConversionPattern;
using ResultCombiner =
std::conditional_t<std::is_same<ComparisonOp, complex::EqualOp>::value,
arith::AndIOp, arith::OrIOp>;
LogicalResult
matchAndRewrite(ComparisonOp op, typename ComparisonOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = adaptor.getLhs()
.getType()
.template cast<ComplexType>()
.getElementType();
Value realLhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getLhs());
Value imagLhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getLhs());
Value realRhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getRhs());
Value imagRhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getRhs());
Value realComparison =
rewriter.create<arith::CmpFOp>(loc, p, realLhs, realRhs);
Value imagComparison =
rewriter.create<arith::CmpFOp>(loc, p, imagLhs, imagRhs);
rewriter.replaceOpWithNewOp<ResultCombiner>(op, realComparison,
imagComparison);
return success();
}
};
// Default conversion which applies the BinaryStandardOp separately on the real
// and imaginary parts. Can for example be used for complex::AddOp and
// complex::SubOp.
template <typename BinaryComplexOp, typename BinaryStandardOp>
struct BinaryComplexOpConversion : public OpConversionPattern<BinaryComplexOp> {
using OpConversionPattern<BinaryComplexOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(BinaryComplexOp op, typename BinaryComplexOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = adaptor.getLhs().getType().template cast<ComplexType>();
auto elementType = type.getElementType().template cast<FloatType>();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value realLhs = b.create<complex::ReOp>(elementType, adaptor.getLhs());
Value realRhs = b.create<complex::ReOp>(elementType, adaptor.getRhs());
Value resultReal =
b.create<BinaryStandardOp>(elementType, realLhs, realRhs);
Value imagLhs = b.create<complex::ImOp>(elementType, adaptor.getLhs());
Value imagRhs = b.create<complex::ImOp>(elementType, adaptor.getRhs());
Value resultImag =
b.create<BinaryStandardOp>(elementType, imagLhs, imagRhs);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
template <typename TrigonometricOp>
struct TrigonometricOpConversion : public OpConversionPattern<TrigonometricOp> {
using OpAdaptor = typename OpConversionPattern<TrigonometricOp>::OpAdaptor;
using OpConversionPattern<TrigonometricOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TrigonometricOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = adaptor.getComplex().getType().template cast<ComplexType>();
auto elementType = type.getElementType().template cast<FloatType>();
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
// Trigonometric ops use a set of common building blocks to convert to real
// ops. Here we create these building blocks and call into an op-specific
// implementation in the subclass to combine them.
Value half = rewriter.create<arith::ConstantOp>(
loc, elementType, rewriter.getFloatAttr(elementType, 0.5));
Value exp = rewriter.create<math::ExpOp>(loc, imag);
Value scaledExp = rewriter.create<arith::MulFOp>(loc, half, exp);
Value reciprocalExp = rewriter.create<arith::DivFOp>(loc, half, exp);
Value sin = rewriter.create<math::SinOp>(loc, real);
Value cos = rewriter.create<math::CosOp>(loc, real);
auto resultPair =
combine(loc, scaledExp, reciprocalExp, sin, cos, rewriter);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultPair.first,
resultPair.second);
return success();
}
virtual std::pair<Value, Value>
combine(Location loc, Value scaledExp, Value reciprocalExp, Value sin,
Value cos, ConversionPatternRewriter &rewriter) const = 0;
};
struct CosOpConversion : public TrigonometricOpConversion<complex::CosOp> {
using TrigonometricOpConversion<complex::CosOp>::TrigonometricOpConversion;
std::pair<Value, Value>
combine(Location loc, Value scaledExp, Value reciprocalExp, Value sin,
Value cos, ConversionPatternRewriter &rewriter) const override {
// Complex cosine is defined as;
// cos(x + iy) = 0.5 * (exp(i(x + iy)) + exp(-i(x + iy)))
// Plugging in:
// exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x))
// exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x)))
// and defining t := exp(y)
// We get:
// Re(cos(x + iy)) = (0.5/t + 0.5*t) * cos x
// Im(cos(x + iy)) = (0.5/t - 0.5*t) * sin x
Value sum = rewriter.create<arith::AddFOp>(loc, reciprocalExp, scaledExp);
Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, cos);
Value diff = rewriter.create<arith::SubFOp>(loc, reciprocalExp, scaledExp);
Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, sin);
return {resultReal, resultImag};
}
};
struct DivOpConversion : public OpConversionPattern<complex::DivOp> {
using OpConversionPattern<complex::DivOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::DivOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = adaptor.getLhs().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
Value lhsReal =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getLhs());
Value lhsImag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getLhs());
Value rhsReal =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getRhs());
Value rhsImag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getRhs());
// Smith's algorithm to divide complex numbers. It is just a bit smarter
// way to compute the following formula:
// (lhsReal + lhsImag * i) / (rhsReal + rhsImag * i)
// = (lhsReal + lhsImag * i) (rhsReal - rhsImag * i) /
// ((rhsReal + rhsImag * i)(rhsReal - rhsImag * i))
// = ((lhsReal * rhsReal + lhsImag * rhsImag) +
// (lhsImag * rhsReal - lhsReal * rhsImag) * i) / ||rhs||^2
//
// Depending on whether |rhsReal| < |rhsImag| we compute either
// rhsRealImagRatio = rhsReal / rhsImag
// rhsRealImagDenom = rhsImag + rhsReal * rhsRealImagRatio
// resultReal = (lhsReal * rhsRealImagRatio + lhsImag) / rhsRealImagDenom
// resultImag = (lhsImag * rhsRealImagRatio - lhsReal) / rhsRealImagDenom
//
// or
//
// rhsImagRealRatio = rhsImag / rhsReal
// rhsImagRealDenom = rhsReal + rhsImag * rhsImagRealRatio
// resultReal = (lhsReal + lhsImag * rhsImagRealRatio) / rhsImagRealDenom
// resultImag = (lhsImag - lhsReal * rhsImagRealRatio) / rhsImagRealDenom
//
// See https://dl.acm.org/citation.cfm?id=368661 for more details.
Value rhsRealImagRatio =
rewriter.create<arith::DivFOp>(loc, rhsReal, rhsImag);
Value rhsRealImagDenom = rewriter.create<arith::AddFOp>(
loc, rhsImag,
rewriter.create<arith::MulFOp>(loc, rhsRealImagRatio, rhsReal));
Value realNumerator1 = rewriter.create<arith::AddFOp>(
loc, rewriter.create<arith::MulFOp>(loc, lhsReal, rhsRealImagRatio),
lhsImag);
Value resultReal1 =
rewriter.create<arith::DivFOp>(loc, realNumerator1, rhsRealImagDenom);
Value imagNumerator1 = rewriter.create<arith::SubFOp>(
loc, rewriter.create<arith::MulFOp>(loc, lhsImag, rhsRealImagRatio),
lhsReal);
Value resultImag1 =
rewriter.create<arith::DivFOp>(loc, imagNumerator1, rhsRealImagDenom);
Value rhsImagRealRatio =
rewriter.create<arith::DivFOp>(loc, rhsImag, rhsReal);
Value rhsImagRealDenom = rewriter.create<arith::AddFOp>(
loc, rhsReal,
rewriter.create<arith::MulFOp>(loc, rhsImagRealRatio, rhsImag));
Value realNumerator2 = rewriter.create<arith::AddFOp>(
loc, lhsReal,
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsImagRealRatio));
Value resultReal2 =
rewriter.create<arith::DivFOp>(loc, realNumerator2, rhsImagRealDenom);
Value imagNumerator2 = rewriter.create<arith::SubFOp>(
loc, lhsImag,
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsImagRealRatio));
Value resultImag2 =
rewriter.create<arith::DivFOp>(loc, imagNumerator2, rhsImagRealDenom);
// Consider corner cases.
// Case 1. Zero denominator, numerator contains at most one NaN value.
Value zero = rewriter.create<arith::ConstantOp>(
loc, elementType, rewriter.getZeroAttr(elementType));
Value rhsRealAbs = rewriter.create<math::AbsOp>(loc, rhsReal);
Value rhsRealIsZero = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsRealAbs, zero);
Value rhsImagAbs = rewriter.create<math::AbsOp>(loc, rhsImag);
Value rhsImagIsZero = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsImagAbs, zero);
Value lhsRealIsNotNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ORD, lhsReal, zero);
Value lhsImagIsNotNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ORD, lhsImag, zero);
Value lhsContainsNotNaNValue =
rewriter.create<arith::OrIOp>(loc, lhsRealIsNotNaN, lhsImagIsNotNaN);
Value resultIsInfinity = rewriter.create<arith::AndIOp>(
loc, lhsContainsNotNaNValue,
rewriter.create<arith::AndIOp>(loc, rhsRealIsZero, rhsImagIsZero));
Value inf = rewriter.create<arith::ConstantOp>(
loc, elementType,
rewriter.getFloatAttr(
elementType, APFloat::getInf(elementType.getFloatSemantics())));
Value infWithSignOfRhsReal =
rewriter.create<math::CopySignOp>(loc, inf, rhsReal);
Value infinityResultReal =
rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsReal);
Value infinityResultImag =
rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsImag);
// Case 2. Infinite numerator, finite denominator.
Value rhsRealFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, rhsRealAbs, inf);
Value rhsImagFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, rhsImagAbs, inf);
Value rhsFinite =
rewriter.create<arith::AndIOp>(loc, rhsRealFinite, rhsImagFinite);
Value lhsRealAbs = rewriter.create<math::AbsOp>(loc, lhsReal);
Value lhsRealInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, lhsRealAbs, inf);
Value lhsImagAbs = rewriter.create<math::AbsOp>(loc, lhsImag);
Value lhsImagInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, lhsImagAbs, inf);
Value lhsInfinite =
rewriter.create<arith::OrIOp>(loc, lhsRealInfinite, lhsImagInfinite);
Value infNumFiniteDenom =
rewriter.create<arith::AndIOp>(loc, lhsInfinite, rhsFinite);
Value one = rewriter.create<arith::ConstantOp>(
loc, elementType, rewriter.getFloatAttr(elementType, 1));
Value lhsRealIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, lhsRealInfinite, one, zero),
lhsReal);
Value lhsImagIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, lhsImagInfinite, one, zero),
lhsImag);
Value lhsRealIsInfWithSignTimesRhsReal =
rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsReal);
Value lhsImagIsInfWithSignTimesRhsImag =
rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsImag);
Value resultReal3 = rewriter.create<arith::MulFOp>(
loc, inf,
rewriter.create<arith::AddFOp>(loc, lhsRealIsInfWithSignTimesRhsReal,
lhsImagIsInfWithSignTimesRhsImag));
Value lhsRealIsInfWithSignTimesRhsImag =
rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsImag);
Value lhsImagIsInfWithSignTimesRhsReal =
rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsReal);
Value resultImag3 = rewriter.create<arith::MulFOp>(
loc, inf,
rewriter.create<arith::SubFOp>(loc, lhsImagIsInfWithSignTimesRhsReal,
lhsRealIsInfWithSignTimesRhsImag));
// Case 3: Finite numerator, infinite denominator.
Value lhsRealFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, lhsRealAbs, inf);
Value lhsImagFinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::ONE, lhsImagAbs, inf);
Value lhsFinite =
rewriter.create<arith::AndIOp>(loc, lhsRealFinite, lhsImagFinite);
Value rhsRealInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsRealAbs, inf);
Value rhsImagInfinite = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, rhsImagAbs, inf);
Value rhsInfinite =
rewriter.create<arith::OrIOp>(loc, rhsRealInfinite, rhsImagInfinite);
Value finiteNumInfiniteDenom =
rewriter.create<arith::AndIOp>(loc, lhsFinite, rhsInfinite);
Value rhsRealIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, rhsRealInfinite, one, zero),
rhsReal);
Value rhsImagIsInfWithSign = rewriter.create<math::CopySignOp>(
loc, rewriter.create<arith::SelectOp>(loc, rhsImagInfinite, one, zero),
rhsImag);
Value rhsRealIsInfWithSignTimesLhsReal =
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsRealIsInfWithSign);
Value rhsImagIsInfWithSignTimesLhsImag =
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsImagIsInfWithSign);
Value resultReal4 = rewriter.create<arith::MulFOp>(
loc, zero,
rewriter.create<arith::AddFOp>(loc, rhsRealIsInfWithSignTimesLhsReal,
rhsImagIsInfWithSignTimesLhsImag));
Value rhsRealIsInfWithSignTimesLhsImag =
rewriter.create<arith::MulFOp>(loc, lhsImag, rhsRealIsInfWithSign);
Value rhsImagIsInfWithSignTimesLhsReal =
rewriter.create<arith::MulFOp>(loc, lhsReal, rhsImagIsInfWithSign);
Value resultImag4 = rewriter.create<arith::MulFOp>(
loc, zero,
rewriter.create<arith::SubFOp>(loc, rhsRealIsInfWithSignTimesLhsImag,
rhsImagIsInfWithSignTimesLhsReal));
Value realAbsSmallerThanImagAbs = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::OLT, rhsRealAbs, rhsImagAbs);
Value resultReal = rewriter.create<arith::SelectOp>(
loc, realAbsSmallerThanImagAbs, resultReal1, resultReal2);
Value resultImag = rewriter.create<arith::SelectOp>(
loc, realAbsSmallerThanImagAbs, resultImag1, resultImag2);
Value resultRealSpecialCase3 = rewriter.create<arith::SelectOp>(
loc, finiteNumInfiniteDenom, resultReal4, resultReal);
Value resultImagSpecialCase3 = rewriter.create<arith::SelectOp>(
loc, finiteNumInfiniteDenom, resultImag4, resultImag);
Value resultRealSpecialCase2 = rewriter.create<arith::SelectOp>(
loc, infNumFiniteDenom, resultReal3, resultRealSpecialCase3);
Value resultImagSpecialCase2 = rewriter.create<arith::SelectOp>(
loc, infNumFiniteDenom, resultImag3, resultImagSpecialCase3);
Value resultRealSpecialCase1 = rewriter.create<arith::SelectOp>(
loc, resultIsInfinity, infinityResultReal, resultRealSpecialCase2);
Value resultImagSpecialCase1 = rewriter.create<arith::SelectOp>(
loc, resultIsInfinity, infinityResultImag, resultImagSpecialCase2);
Value resultRealIsNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::UNO, resultReal, zero);
Value resultImagIsNaN = rewriter.create<arith::CmpFOp>(
loc, arith::CmpFPredicate::UNO, resultImag, zero);
Value resultIsNaN =
rewriter.create<arith::AndIOp>(loc, resultRealIsNaN, resultImagIsNaN);
Value resultRealWithSpecialCases = rewriter.create<arith::SelectOp>(
loc, resultIsNaN, resultRealSpecialCase1, resultReal);
Value resultImagWithSpecialCases = rewriter.create<arith::SelectOp>(
loc, resultIsNaN, resultImagSpecialCase1, resultImag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(
op, type, resultRealWithSpecialCases, resultImagWithSpecialCases);
return success();
}
};
struct ExpOpConversion : public OpConversionPattern<complex::ExpOp> {
using OpConversionPattern<complex::ExpOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::ExpOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = adaptor.getComplex().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value expReal = rewriter.create<math::ExpOp>(loc, real);
Value cosImag = rewriter.create<math::CosOp>(loc, imag);
Value resultReal = rewriter.create<arith::MulFOp>(loc, expReal, cosImag);
Value sinImag = rewriter.create<math::SinOp>(loc, imag);
Value resultImag = rewriter.create<arith::MulFOp>(loc, expReal, sinImag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct Expm1OpConversion : public OpConversionPattern<complex::Expm1Op> {
using OpConversionPattern<complex::Expm1Op>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::Expm1Op op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = adaptor.getComplex().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value exp = b.create<complex::ExpOp>(adaptor.getComplex());
Value real = b.create<complex::ReOp>(elementType, exp);
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value realMinusOne = b.create<arith::SubFOp>(real, one);
Value imag = b.create<complex::ImOp>(elementType, exp);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, realMinusOne,
imag);
return success();
}
};
struct LogOpConversion : public OpConversionPattern<complex::LogOp> {
using OpConversionPattern<complex::LogOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::LogOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = adaptor.getComplex().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex());
Value resultReal = b.create<math::LogOp>(elementType, abs);
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value resultImag = b.create<math::Atan2Op>(elementType, imag, real);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct Log1pOpConversion : public OpConversionPattern<complex::Log1pOp> {
using OpConversionPattern<complex::Log1pOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::Log1pOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = adaptor.getComplex().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value realPlusOne = b.create<arith::AddFOp>(real, one);
Value newComplex = b.create<complex::CreateOp>(type, realPlusOne, imag);
rewriter.replaceOpWithNewOp<complex::LogOp>(op, type, newComplex);
return success();
}
};
struct MulOpConversion : public OpConversionPattern<complex::MulOp> {
using OpConversionPattern<complex::MulOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::MulOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = adaptor.getLhs().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
Value lhsReal = b.create<complex::ReOp>(elementType, adaptor.getLhs());
Value lhsRealAbs = b.create<math::AbsOp>(lhsReal);
Value lhsImag = b.create<complex::ImOp>(elementType, adaptor.getLhs());
Value lhsImagAbs = b.create<math::AbsOp>(lhsImag);
Value rhsReal = b.create<complex::ReOp>(elementType, adaptor.getRhs());
Value rhsRealAbs = b.create<math::AbsOp>(rhsReal);
Value rhsImag = b.create<complex::ImOp>(elementType, adaptor.getRhs());
Value rhsImagAbs = b.create<math::AbsOp>(rhsImag);
Value lhsRealTimesRhsReal = b.create<arith::MulFOp>(lhsReal, rhsReal);
Value lhsRealTimesRhsRealAbs = b.create<math::AbsOp>(lhsRealTimesRhsReal);
Value lhsImagTimesRhsImag = b.create<arith::MulFOp>(lhsImag, rhsImag);
Value lhsImagTimesRhsImagAbs = b.create<math::AbsOp>(lhsImagTimesRhsImag);
Value real =
b.create<arith::SubFOp>(lhsRealTimesRhsReal, lhsImagTimesRhsImag);
Value lhsImagTimesRhsReal = b.create<arith::MulFOp>(lhsImag, rhsReal);
Value lhsImagTimesRhsRealAbs = b.create<math::AbsOp>(lhsImagTimesRhsReal);
Value lhsRealTimesRhsImag = b.create<arith::MulFOp>(lhsReal, rhsImag);
Value lhsRealTimesRhsImagAbs = b.create<math::AbsOp>(lhsRealTimesRhsImag);
Value imag =
b.create<arith::AddFOp>(lhsImagTimesRhsReal, lhsRealTimesRhsImag);
// Handle cases where the "naive" calculation results in NaN values.
Value realIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, real, real);
Value imagIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, imag, imag);
Value isNan = b.create<arith::AndIOp>(realIsNan, imagIsNan);
Value inf = b.create<arith::ConstantOp>(
elementType,
b.getFloatAttr(elementType,
APFloat::getInf(elementType.getFloatSemantics())));
// Case 1. `lhsReal` or `lhsImag` are infinite.
Value lhsRealIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, lhsRealAbs, inf);
Value lhsImagIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, lhsImagAbs, inf);
Value lhsIsInf = b.create<arith::OrIOp>(lhsRealIsInf, lhsImagIsInf);
Value rhsRealIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, rhsReal, rhsReal);
Value rhsImagIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, rhsImag, rhsImag);
Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1));
Value lhsRealIsInfFloat =
b.create<arith::SelectOp>(lhsRealIsInf, one, zero);
lhsReal = b.create<arith::SelectOp>(
lhsIsInf, b.create<math::CopySignOp>(lhsRealIsInfFloat, lhsReal),
lhsReal);
Value lhsImagIsInfFloat =
b.create<arith::SelectOp>(lhsImagIsInf, one, zero);
lhsImag = b.create<arith::SelectOp>(
lhsIsInf, b.create<math::CopySignOp>(lhsImagIsInfFloat, lhsImag),
lhsImag);
Value lhsIsInfAndRhsRealIsNan =
b.create<arith::AndIOp>(lhsIsInf, rhsRealIsNan);
rhsReal = b.create<arith::SelectOp>(
lhsIsInfAndRhsRealIsNan, b.create<math::CopySignOp>(zero, rhsReal),
rhsReal);
Value lhsIsInfAndRhsImagIsNan =
b.create<arith::AndIOp>(lhsIsInf, rhsImagIsNan);
rhsImag = b.create<arith::SelectOp>(
lhsIsInfAndRhsImagIsNan, b.create<math::CopySignOp>(zero, rhsImag),
rhsImag);
// Case 2. `rhsReal` or `rhsImag` are infinite.
Value rhsRealIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, rhsRealAbs, inf);
Value rhsImagIsInf =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, rhsImagAbs, inf);
Value rhsIsInf = b.create<arith::OrIOp>(rhsRealIsInf, rhsImagIsInf);
Value lhsRealIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, lhsReal, lhsReal);
Value lhsImagIsNan =
b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, lhsImag, lhsImag);
Value rhsRealIsInfFloat =
b.create<arith::SelectOp>(rhsRealIsInf, one, zero);
rhsReal = b.create<arith::SelectOp>(
rhsIsInf, b.create<math::CopySignOp>(rhsRealIsInfFloat, rhsReal),
rhsReal);
Value rhsImagIsInfFloat =
b.create<arith::SelectOp>(rhsImagIsInf, one, zero);
rhsImag = b.create<arith::SelectOp>(
rhsIsInf, b.create<math::CopySignOp>(rhsImagIsInfFloat, rhsImag),
rhsImag);
Value rhsIsInfAndLhsRealIsNan =
b.create<arith::AndIOp>(rhsIsInf, lhsRealIsNan);
lhsReal = b.create<arith::SelectOp>(
rhsIsInfAndLhsRealIsNan, b.create<math::CopySignOp>(zero, lhsReal),
lhsReal);
Value rhsIsInfAndLhsImagIsNan =
b.create<arith::AndIOp>(rhsIsInf, lhsImagIsNan);
lhsImag = b.create<arith::SelectOp>(
rhsIsInfAndLhsImagIsNan, b.create<math::CopySignOp>(zero, lhsImag),
lhsImag);
Value recalc = b.create<arith::OrIOp>(lhsIsInf, rhsIsInf);
// Case 3. One of the pairwise products of left hand side with right hand
// side is infinite.
Value lhsRealTimesRhsRealIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsRealTimesRhsRealAbs, inf);
Value lhsImagTimesRhsImagIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsImagTimesRhsImagAbs, inf);
Value isSpecialCase = b.create<arith::OrIOp>(lhsRealTimesRhsRealIsInf,
lhsImagTimesRhsImagIsInf);
Value lhsRealTimesRhsImagIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsRealTimesRhsImagAbs, inf);
isSpecialCase =
b.create<arith::OrIOp>(isSpecialCase, lhsRealTimesRhsImagIsInf);
Value lhsImagTimesRhsRealIsInf = b.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, lhsImagTimesRhsRealAbs, inf);
isSpecialCase =
b.create<arith::OrIOp>(isSpecialCase, lhsImagTimesRhsRealIsInf);
Type i1Type = b.getI1Type();
Value notRecalc = b.create<arith::XOrIOp>(
recalc,
b.create<arith::ConstantOp>(i1Type, b.getIntegerAttr(i1Type, 1)));
isSpecialCase = b.create<arith::AndIOp>(isSpecialCase, notRecalc);
Value isSpecialCaseAndLhsRealIsNan =
b.create<arith::AndIOp>(isSpecialCase, lhsRealIsNan);
lhsReal = b.create<arith::SelectOp>(
isSpecialCaseAndLhsRealIsNan, b.create<math::CopySignOp>(zero, lhsReal),
lhsReal);
Value isSpecialCaseAndLhsImagIsNan =
b.create<arith::AndIOp>(isSpecialCase, lhsImagIsNan);
lhsImag = b.create<arith::SelectOp>(
isSpecialCaseAndLhsImagIsNan, b.create<math::CopySignOp>(zero, lhsImag),
lhsImag);
Value isSpecialCaseAndRhsRealIsNan =
b.create<arith::AndIOp>(isSpecialCase, rhsRealIsNan);
rhsReal = b.create<arith::SelectOp>(
isSpecialCaseAndRhsRealIsNan, b.create<math::CopySignOp>(zero, rhsReal),
rhsReal);
Value isSpecialCaseAndRhsImagIsNan =
b.create<arith::AndIOp>(isSpecialCase, rhsImagIsNan);
rhsImag = b.create<arith::SelectOp>(
isSpecialCaseAndRhsImagIsNan, b.create<math::CopySignOp>(zero, rhsImag),
rhsImag);
recalc = b.create<arith::OrIOp>(recalc, isSpecialCase);
recalc = b.create<arith::AndIOp>(isNan, recalc);
// Recalculate real part.
lhsRealTimesRhsReal = b.create<arith::MulFOp>(lhsReal, rhsReal);
lhsImagTimesRhsImag = b.create<arith::MulFOp>(lhsImag, rhsImag);
Value newReal =
b.create<arith::SubFOp>(lhsRealTimesRhsReal, lhsImagTimesRhsImag);
real = b.create<arith::SelectOp>(
recalc, b.create<arith::MulFOp>(inf, newReal), real);
// Recalculate imag part.
lhsImagTimesRhsReal = b.create<arith::MulFOp>(lhsImag, rhsReal);
lhsRealTimesRhsImag = b.create<arith::MulFOp>(lhsReal, rhsImag);
Value newImag =
b.create<arith::AddFOp>(lhsImagTimesRhsReal, lhsRealTimesRhsImag);
imag = b.create<arith::SelectOp>(
recalc, b.create<arith::MulFOp>(inf, newImag), imag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, imag);
return success();
}
};
struct NegOpConversion : public OpConversionPattern<complex::NegOp> {
using OpConversionPattern<complex::NegOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::NegOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = adaptor.getComplex().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value negReal = rewriter.create<arith::NegFOp>(loc, real);
Value negImag = rewriter.create<arith::NegFOp>(loc, imag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, negReal, negImag);
return success();
}
};
struct SinOpConversion : public TrigonometricOpConversion<complex::SinOp> {
using TrigonometricOpConversion<complex::SinOp>::TrigonometricOpConversion;
std::pair<Value, Value>
combine(Location loc, Value scaledExp, Value reciprocalExp, Value sin,
Value cos, ConversionPatternRewriter &rewriter) const override {
// Complex sine is defined as;
// sin(x + iy) = -0.5i * (exp(i(x + iy)) - exp(-i(x + iy)))
// Plugging in:
// exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x))
// exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x)))
// and defining t := exp(y)
// We get:
// Re(sin(x + iy)) = (0.5*t + 0.5/t) * sin x
// Im(cos(x + iy)) = (0.5*t - 0.5/t) * cos x
Value sum = rewriter.create<arith::AddFOp>(loc, scaledExp, reciprocalExp);
Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, sin);
Value diff = rewriter.create<arith::SubFOp>(loc, scaledExp, reciprocalExp);
Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, cos);
return {resultReal, resultImag};
}
};
// The algorithm is listed in https://dl.acm.org/doi/pdf/10.1145/363717.363780.
struct SqrtOpConversion : public OpConversionPattern<complex::SqrtOp> {
using OpConversionPattern<complex::SqrtOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::SqrtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = op.getType().cast<ComplexType>();
Type elementType = type.getElementType();
Value arg = adaptor.getComplex();
Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value absLhs = b.create<math::AbsOp>(real);
Value absArg = b.create<complex::AbsOp>(elementType, arg);
Value addAbs = b.create<arith::AddFOp>(absLhs, absArg);
Value half = b.create<arith::ConstantOp>(
elementType, b.getFloatAttr(elementType, 0.5));
Value halfAddAbs = b.create<arith::MulFOp>(addAbs, half);
Value sqrtAddAbs = b.create<math::SqrtOp>(halfAddAbs);
Value realIsNegative =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, real, zero);
Value imagIsNegative =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, imag, zero);
Value resultReal = sqrtAddAbs;
Value imagDivTwoResultReal = b.create<arith::DivFOp>(
imag, b.create<arith::AddFOp>(resultReal, resultReal));
Value negativeResultReal = b.create<arith::NegFOp>(resultReal);
Value resultImag = b.create<arith::SelectOp>(
realIsNegative,
b.create<arith::SelectOp>(imagIsNegative, negativeResultReal,
resultReal),
imagDivTwoResultReal);
resultReal = b.create<arith::SelectOp>(
realIsNegative,
b.create<arith::DivFOp>(
imag, b.create<arith::AddFOp>(resultImag, resultImag)),
resultReal);
Value realIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero);
Value imagIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero);
Value argIsZero = b.create<arith::AndIOp>(realIsZero, imagIsZero);
resultReal = b.create<arith::SelectOp>(argIsZero, zero, resultReal);
resultImag = b.create<arith::SelectOp>(argIsZero, zero, resultImag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
resultImag);
return success();
}
};
struct SignOpConversion : public OpConversionPattern<complex::SignOp> {
using OpConversionPattern<complex::SignOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::SignOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = adaptor.getComplex().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value realIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero);
Value imagIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero);
Value isZero = b.create<arith::AndIOp>(realIsZero, imagIsZero);
auto abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex());
Value realSign = b.create<arith::DivFOp>(real, abs);
Value imagSign = b.create<arith::DivFOp>(imag, abs);
Value sign = b.create<complex::CreateOp>(type, realSign, imagSign);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isZero,
adaptor.getComplex(), sign);
return success();
}
};
struct TanOpConversion : public OpConversionPattern<complex::TanOp> {
using OpConversionPattern<complex::TanOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::TanOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
Value cos = rewriter.create<complex::CosOp>(loc, adaptor.getComplex());
Value sin = rewriter.create<complex::SinOp>(loc, adaptor.getComplex());
rewriter.replaceOpWithNewOp<complex::DivOp>(op, sin, cos);
return success();
}
};
struct TanhOpConversion : public OpConversionPattern<complex::TanhOp> {
using OpConversionPattern<complex::TanhOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::TanhOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = adaptor.getComplex().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
// The hyperbolic tangent for complex number can be calculated as follows.
// tanh(x + i * y) = (tanh(x) + i * tan(y)) / (1 + tanh(x) * tan(y))
// See: https://proofwiki.org/wiki/Hyperbolic_Tangent_of_Complex_Number
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value tanhA = rewriter.create<math::TanhOp>(loc, real);
Value cosB = rewriter.create<math::CosOp>(loc, imag);
Value sinB = rewriter.create<math::SinOp>(loc, imag);
Value tanB = rewriter.create<arith::DivFOp>(loc, sinB, cosB);
Value numerator =
rewriter.create<complex::CreateOp>(loc, type, tanhA, tanB);
Value one = rewriter.create<arith::ConstantOp>(
loc, elementType, rewriter.getFloatAttr(elementType, 1));
Value mul = rewriter.create<arith::MulFOp>(loc, tanhA, tanB);
Value denominator = rewriter.create<complex::CreateOp>(loc, type, one, mul);
rewriter.replaceOpWithNewOp<complex::DivOp>(op, numerator, denominator);
return success();
}
};
struct ConjOpConversion : public OpConversionPattern<complex::ConjOp> {
using OpConversionPattern<complex::ConjOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::ConjOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = adaptor.getComplex().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
Value real =
rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex());
Value negImag = rewriter.create<arith::NegFOp>(loc, elementType, imag);
rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, negImag);
return success();
}
};
/// Coverts x^y = (a+bi)^(c+di) to
/// (a*a+b*b)^(0.5c) * exp(-d*atan2(b,a)) * (cos(q) + i*sin(q)),
/// where q = c*atan2(b,a)+0.5d*ln(a*a+b*b)
static Value powOpConversionImpl(mlir::ImplicitLocOpBuilder &builder,
ComplexType type, Value a, Value b, Value c,
Value d) {
auto elementType = type.getElementType().cast<FloatType>();
// Compute (a*a+b*b)^(0.5c).
Value aaPbb = builder.create<arith::AddFOp>(
builder.create<arith::MulFOp>(a, a), builder.create<arith::MulFOp>(b, b));
Value half = builder.create<arith::ConstantOp>(
elementType, builder.getFloatAttr(elementType, 0.5));
Value halfC = builder.create<arith::MulFOp>(half, c);
Value aaPbbTohalfC = builder.create<math::PowFOp>(aaPbb, halfC);
// Compute exp(-d*atan2(b,a)).
Value negD = builder.create<arith::NegFOp>(d);
Value argX = builder.create<math::Atan2Op>(b, a);
Value negDArgX = builder.create<arith::MulFOp>(negD, argX);
Value eToNegDArgX = builder.create<math::ExpOp>(negDArgX);
// Compute (a*a+b*b)^(0.5c) * exp(-d*atan2(b,a)).
Value coeff = builder.create<arith::MulFOp>(aaPbbTohalfC, eToNegDArgX);
// Compute c*atan2(b,a)+0.5d*ln(a*a+b*b).
Value lnAaPbb = builder.create<math::LogOp>(aaPbb);
Value halfD = builder.create<arith::MulFOp>(half, d);
Value q = builder.create<arith::AddFOp>(
builder.create<arith::MulFOp>(c, argX),
builder.create<arith::MulFOp>(halfD, lnAaPbb));
Value cosQ = builder.create<math::CosOp>(q);
Value sinQ = builder.create<math::SinOp>(q);
Value zero = builder.create<arith::ConstantOp>(
elementType, builder.getFloatAttr(elementType, 0));
Value one = builder.create<arith::ConstantOp>(
elementType, builder.getFloatAttr(elementType, 1));
Value xEqZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, aaPbb, zero);
Value yGeZero = builder.create<arith::AndIOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGE, c, zero),
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, d, zero));
Value cEqZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, c, zero);
Value complexZero = builder.create<complex::CreateOp>(type, zero, zero);
Value complexOne = builder.create<complex::CreateOp>(type, one, zero);
Value complexOther = builder.create<complex::CreateOp>(
type, builder.create<arith::MulFOp>(coeff, cosQ),
builder.create<arith::MulFOp>(coeff, sinQ));
// x^y is 0 if x is 0 and y > 0. 0^0 is defined to be 1.0, see
// Branch Cuts for Complex Elementary Functions or Much Ado About
// Nothing's Sign Bit, W. Kahan, Section 10.
return builder.create<arith::SelectOp>(
builder.create<arith::AndIOp>(xEqZero, yGeZero),
builder.create<arith::SelectOp>(cEqZero, complexOne, complexZero),
complexOther);
}
struct PowOpConversion : public OpConversionPattern<complex::PowOp> {
using OpConversionPattern<complex::PowOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::PowOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder builder(op.getLoc(), rewriter);
auto type = adaptor.getLhs().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
Value a = builder.create<complex::ReOp>(elementType, adaptor.getLhs());
Value b = builder.create<complex::ImOp>(elementType, adaptor.getLhs());
Value c = builder.create<complex::ReOp>(elementType, adaptor.getRhs());
Value d = builder.create<complex::ImOp>(elementType, adaptor.getRhs());
rewriter.replaceOp(op, {powOpConversionImpl(builder, type, a, b, c, d)});
return success();
}
};
struct RsqrtOpConversion : public OpConversionPattern<complex::RsqrtOp> {
using OpConversionPattern<complex::RsqrtOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::RsqrtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder builder(op.getLoc(), rewriter);
auto type = adaptor.getComplex().getType().cast<ComplexType>();
auto elementType = type.getElementType().cast<FloatType>();
Value a = builder.create<complex::ReOp>(elementType, adaptor.getComplex());
Value b = builder.create<complex::ImOp>(elementType, adaptor.getComplex());
Value c = builder.create<arith::ConstantOp>(
elementType, builder.getFloatAttr(elementType, -0.5));
Value d = builder.create<arith::ConstantOp>(
elementType, builder.getFloatAttr(elementType, 0));
rewriter.replaceOp(op, {powOpConversionImpl(builder, type, a, b, c, d)});
return success();
}
};
struct AngleOpConversion : public OpConversionPattern<complex::AngleOp> {
using OpConversionPattern<complex::AngleOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::AngleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = op.getType();
Value real =
rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex());
rewriter.replaceOpWithNewOp<math::Atan2Op>(op, imag, real);
return success();
}
};
} // namespace
void mlir::populateComplexToStandardConversionPatterns(
RewritePatternSet &patterns) {
// clang-format off
patterns.add<
AbsOpConversion,
AngleOpConversion,
Atan2OpConversion,
BinaryComplexOpConversion<complex::AddOp, arith::AddFOp>,
BinaryComplexOpConversion<complex::SubOp, arith::SubFOp>,
ComparisonOpConversion<complex::EqualOp, arith::CmpFPredicate::OEQ>,
ComparisonOpConversion<complex::NotEqualOp, arith::CmpFPredicate::UNE>,
ConjOpConversion,
CosOpConversion,
DivOpConversion,
ExpOpConversion,
Expm1OpConversion,
Log1pOpConversion,
LogOpConversion,
MulOpConversion,
NegOpConversion,
SignOpConversion,
SinOpConversion,
SqrtOpConversion,
TanOpConversion,
TanhOpConversion,
PowOpConversion,
RsqrtOpConversion
>(patterns.getContext());
// clang-format on
}
namespace {
struct ConvertComplexToStandardPass
: public ConvertComplexToStandardBase<ConvertComplexToStandardPass> {
void runOnOperation() override;
};
void ConvertComplexToStandardPass::runOnOperation() {
// Convert to the Standard dialect using the converter defined above.
RewritePatternSet patterns(&getContext());
populateComplexToStandardConversionPatterns(patterns);
ConversionTarget target(getContext());
target.addLegalDialect<arith::ArithmeticDialect, math::MathDialect>();
target.addLegalOp<complex::CreateOp, complex::ImOp, complex::ReOp>();
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
}
} // namespace
std::unique_ptr<Pass> mlir::createConvertComplexToStandardPass() {
return std::make_unique<ConvertComplexToStandardPass>();
}