Files
clang-p2996/flang/lib/Optimizer/OpenMP/GenericLoopConversion.cpp
Kareem Ergawy 1e2d5f7943 [NFC][mlir][OpenMP] Remove mentions of target from generic loop rewrite (#124528)
This removes mentions of `target` from the generic `loop` rewrite pass
since there is not need for it anyway. It is enough to detect `loop`'s
nesting within `teams` or `parallel` directives.
2025-01-27 16:44:17 +01:00

302 lines
11 KiB
C++

//===- GenericLoopConversion.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Common/OpenMP-utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include <memory>
namespace flangomp {
#define GEN_PASS_DEF_GENERICLOOPCONVERSIONPASS
#include "flang/Optimizer/OpenMP/Passes.h.inc"
} // namespace flangomp
namespace {
/// A conversion pattern to handle various combined forms of `omp.loop`. For how
/// combined/composite directive are handled see:
/// https://discourse.llvm.org/t/rfc-representing-combined-composite-constructs-in-the-openmp-dialect/76986.
class GenericLoopConversionPattern
: public mlir::OpConversionPattern<mlir::omp::LoopOp> {
public:
enum class GenericLoopCombinedInfo { Standalone, TeamsLoop, ParallelLoop };
using mlir::OpConversionPattern<mlir::omp::LoopOp>::OpConversionPattern;
explicit GenericLoopConversionPattern(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<mlir::omp::LoopOp>{ctx} {
// Enable rewrite recursion to make sure nested `loop` directives are
// handled.
this->setHasBoundedRewriteRecursion(true);
}
mlir::LogicalResult
matchAndRewrite(mlir::omp::LoopOp loopOp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
assert(mlir::succeeded(checkLoopConversionSupportStatus(loopOp)));
GenericLoopCombinedInfo combinedInfo = findGenericLoopCombineInfo(loopOp);
switch (combinedInfo) {
case GenericLoopCombinedInfo::Standalone:
rewriteStandaloneLoop(loopOp, rewriter);
break;
case GenericLoopCombinedInfo::ParallelLoop:
llvm_unreachable(
"not yet implemented: Combined `parallel loop` directive");
break;
case GenericLoopCombinedInfo::TeamsLoop:
rewriteToDistributeParallelDo(loopOp, rewriter);
break;
}
rewriter.eraseOp(loopOp);
return mlir::success();
}
static mlir::LogicalResult
checkLoopConversionSupportStatus(mlir::omp::LoopOp loopOp) {
GenericLoopCombinedInfo combinedInfo = findGenericLoopCombineInfo(loopOp);
switch (combinedInfo) {
case GenericLoopCombinedInfo::Standalone:
break;
case GenericLoopCombinedInfo::ParallelLoop:
return loopOp.emitError(
"not yet implemented: Combined `parallel loop` directive");
case GenericLoopCombinedInfo::TeamsLoop:
break;
}
auto todo = [&loopOp](mlir::StringRef clauseName) {
return loopOp.emitError()
<< "not yet implemented: Unhandled clause " << clauseName << " in "
<< loopOp->getName() << " operation";
};
// For standalone directives, `bind` is already supported. Other combined
// forms will be supported in a follow-up PR.
if (combinedInfo != GenericLoopCombinedInfo::Standalone &&
loopOp.getBindKind())
return todo("bind");
if (loopOp.getOrder())
return todo("order");
if (!loopOp.getReductionVars().empty())
return todo("reduction");
// TODO For `teams loop`, check similar constrains to what is checked
// by `TeamsLoopChecker` in SemaOpenMP.cpp.
return mlir::success();
}
private:
static GenericLoopCombinedInfo
findGenericLoopCombineInfo(mlir::omp::LoopOp loopOp) {
mlir::Operation *parentOp = loopOp->getParentOp();
GenericLoopCombinedInfo result = GenericLoopCombinedInfo::Standalone;
if (auto teamsOp = mlir::dyn_cast_if_present<mlir::omp::TeamsOp>(parentOp))
result = GenericLoopCombinedInfo::TeamsLoop;
if (auto parallelOp =
mlir::dyn_cast_if_present<mlir::omp::ParallelOp>(parentOp))
result = GenericLoopCombinedInfo::ParallelLoop;
return result;
}
void rewriteStandaloneLoop(mlir::omp::LoopOp loopOp,
mlir::ConversionPatternRewriter &rewriter) const {
using namespace mlir::omp;
std::optional<ClauseBindKind> bindKind = loopOp.getBindKind();
if (!bindKind.has_value())
return rewriteToSimdLoop(loopOp, rewriter);
switch (*loopOp.getBindKind()) {
case ClauseBindKind::Parallel:
return rewriteToWsloop(loopOp, rewriter);
case ClauseBindKind::Teams:
return rewriteToDistrbute(loopOp, rewriter);
case ClauseBindKind::Thread:
return rewriteToSimdLoop(loopOp, rewriter);
}
}
/// Rewrites standalone `loop` (without `bind` clause or with
/// `bind(parallel)`) directives to equivalent `simd` constructs.
///
/// The reasoning behind this decision is that according to the spec (version
/// 5.2, section 11.7.1):
///
/// "If the bind clause is not specified on a construct for which it may be
/// specified and the construct is closely nested inside a teams or parallel
/// construct, the effect is as if binding is teams or parallel. If none of
/// those conditions hold, the binding region is not defined."
///
/// which means that standalone `loop` directives have undefined binding
/// region. Moreover, the spec says (in the next paragraph):
///
/// "The specified binding region determines the binding thread set.
/// Specifically, if the binding region is a teams region, then the binding
/// thread set is the set of initial threads that are executing that region
/// while if the binding region is a parallel region, then the binding thread
/// set is the team of threads that are executing that region. If the binding
/// region is not defined, then the binding thread set is the encountering
/// thread."
///
/// which means that the binding thread set for a standalone `loop` directive
/// is only the encountering thread.
///
/// Since the encountering thread is the binding thread (set) for a
/// standalone `loop` directive, the best we can do in such case is to "simd"
/// the directive.
void rewriteToSimdLoop(mlir::omp::LoopOp loopOp,
mlir::ConversionPatternRewriter &rewriter) const {
loopOp.emitWarning(
"Detected standalone OpenMP `loop` directive with thread binding, "
"the associated loop will be rewritten to `simd`.");
rewriteToSingleWrapperOp<mlir::omp::SimdOp, mlir::omp::SimdOperands>(
loopOp, rewriter);
}
void rewriteToDistrbute(mlir::omp::LoopOp loopOp,
mlir::ConversionPatternRewriter &rewriter) const {
rewriteToSingleWrapperOp<mlir::omp::DistributeOp,
mlir::omp::DistributeOperands>(loopOp, rewriter);
}
void rewriteToWsloop(mlir::omp::LoopOp loopOp,
mlir::ConversionPatternRewriter &rewriter) const {
rewriteToSingleWrapperOp<mlir::omp::WsloopOp, mlir::omp::WsloopOperands>(
loopOp, rewriter);
}
// TODO Suggestion by Sergio: tag auto-generated operations for constructs
// that weren't part of the original program, that would be useful
// information for debugging purposes later on. This new attribute could be
// used for `omp.loop`, but also for `do concurrent` transformations,
// `workshare`, `workdistribute`, etc. The tag could be used for all kinds of
// auto-generated operations using a dialect attribute (named something like
// `omp.origin` or `omp.derived`) and perhaps hold the name of the operation
// it was derived from, the reason it was transformed or something like that
// we could use when emitting any messages related to it later on.
template <typename OpTy, typename OpOperandsTy>
void
rewriteToSingleWrapperOp(mlir::omp::LoopOp loopOp,
mlir::ConversionPatternRewriter &rewriter) const {
OpOperandsTy clauseOps;
clauseOps.privateVars = loopOp.getPrivateVars();
auto privateSyms = loopOp.getPrivateSyms();
if (privateSyms)
clauseOps.privateSyms.assign(privateSyms->begin(), privateSyms->end());
Fortran::common::openmp::EntryBlockArgs args;
args.priv.vars = clauseOps.privateVars;
auto wrapperOp = rewriter.create<OpTy>(loopOp.getLoc(), clauseOps);
mlir::Block *opBlock = genEntryBlock(rewriter, args, wrapperOp.getRegion());
mlir::IRMapping mapper;
mlir::Block &loopBlock = *loopOp.getRegion().begin();
for (auto [loopOpArg, opArg] :
llvm::zip_equal(loopBlock.getArguments(), opBlock->getArguments()))
mapper.map(loopOpArg, opArg);
rewriter.clone(*loopOp.begin(), mapper);
}
void rewriteToDistributeParallelDo(
mlir::omp::LoopOp loopOp,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::omp::ParallelOperands parallelClauseOps;
parallelClauseOps.privateVars = loopOp.getPrivateVars();
auto privateSyms = loopOp.getPrivateSyms();
if (privateSyms)
parallelClauseOps.privateSyms.assign(privateSyms->begin(),
privateSyms->end());
Fortran::common::openmp::EntryBlockArgs parallelArgs;
parallelArgs.priv.vars = parallelClauseOps.privateVars;
auto parallelOp = rewriter.create<mlir::omp::ParallelOp>(loopOp.getLoc(),
parallelClauseOps);
mlir::Block *parallelBlock =
genEntryBlock(rewriter, parallelArgs, parallelOp.getRegion());
parallelOp.setComposite(true);
rewriter.setInsertionPoint(
rewriter.create<mlir::omp::TerminatorOp>(loopOp.getLoc()));
mlir::omp::DistributeOperands distributeClauseOps;
auto distributeOp = rewriter.create<mlir::omp::DistributeOp>(
loopOp.getLoc(), distributeClauseOps);
distributeOp.setComposite(true);
rewriter.createBlock(&distributeOp.getRegion());
mlir::omp::WsloopOperands wsloopClauseOps;
auto wsloopOp =
rewriter.create<mlir::omp::WsloopOp>(loopOp.getLoc(), wsloopClauseOps);
wsloopOp.setComposite(true);
rewriter.createBlock(&wsloopOp.getRegion());
mlir::IRMapping mapper;
mlir::Block &loopBlock = *loopOp.getRegion().begin();
for (auto [loopOpArg, parallelOpArg] : llvm::zip_equal(
loopBlock.getArguments(), parallelBlock->getArguments()))
mapper.map(loopOpArg, parallelOpArg);
rewriter.clone(*loopOp.begin(), mapper);
}
};
class GenericLoopConversionPass
: public flangomp::impl::GenericLoopConversionPassBase<
GenericLoopConversionPass> {
public:
GenericLoopConversionPass() = default;
void runOnOperation() override {
mlir::func::FuncOp func = getOperation();
if (func.isDeclaration())
return;
mlir::MLIRContext *context = &getContext();
mlir::RewritePatternSet patterns(context);
patterns.insert<GenericLoopConversionPattern>(context);
mlir::ConversionTarget target(*context);
target.markUnknownOpDynamicallyLegal(
[](mlir::Operation *) { return true; });
target.addDynamicallyLegalOp<mlir::omp::LoopOp>(
[](mlir::omp::LoopOp loopOp) {
return mlir::failed(
GenericLoopConversionPattern::checkLoopConversionSupportStatus(
loopOp));
});
if (mlir::failed(mlir::applyFullConversion(getOperation(), target,
std::move(patterns)))) {
mlir::emitError(func.getLoc(), "error in converting `omp.loop` op");
signalPassFailure();
}
}
};
} // namespace