Files
clang-p2996/lldb/source/Plugins/Process/Linux/ProcessLinux.cpp
Greg Clayton 93d3c8339c The DynamicLoader plug-in instance now lives up in lldb_private::Process where
it should live and the lldb_private::Process takes care of managing the 
auto pointer to the dynamic loader instance.

Also, now that the ArchSpec contains the target triple, we are able to 
correctly set the Target architecture in DidLaunch/DidAttach in the subclasses,
and then the lldb_private::Process will find the dynamic loader plug-in 
by letting the dynamic loader plug-ins inspect the arch/triple in the target.

So now the ProcessGDBRemote plug-in is another step closer to be purely 
process/platform agnostic.

I updated the ProcessMacOSX and the ProcessLinux plug-ins accordingly.

llvm-svn: 125650
2011-02-16 04:46:07 +00:00

458 lines
10 KiB
C++

//===-- ProcessLinux.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/PluginManager.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/Target.h"
#include "ProcessLinux.h"
#include "ProcessMonitor.h"
#include "LinuxThread.h"
using namespace lldb;
using namespace lldb_private;
//------------------------------------------------------------------------------
// Static functions.
Process*
ProcessLinux::CreateInstance(Target& target, Listener &listener)
{
return new ProcessLinux(target, listener);
}
void
ProcessLinux::Initialize()
{
static bool g_initialized = false;
if (!g_initialized)
{
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance);
g_initialized = true;
}
}
void
ProcessLinux::Terminate()
{
}
const char *
ProcessLinux::GetPluginNameStatic()
{
return "plugin.process.linux";
}
const char *
ProcessLinux::GetPluginDescriptionStatic()
{
return "Process plugin for Linux";
}
//------------------------------------------------------------------------------
// Constructors and destructors.
ProcessLinux::ProcessLinux(Target& target, Listener &listener)
: Process(target, listener),
m_monitor(NULL),
m_module(NULL)
{
// FIXME: Putting this code in the ctor and saving the byte order in a
// member variable is a hack to avoid const qual issues in GetByteOrder.
ObjectFile *obj_file = GetTarget().GetExecutableModule()->GetObjectFile();
m_byte_order = obj_file->GetByteOrder();
}
ProcessLinux::~ProcessLinux()
{
delete m_monitor;
}
//------------------------------------------------------------------------------
// Process protocol.
bool
ProcessLinux::CanDebug(Target &target)
{
// For now we are just making sure the file exists for a given module
ModuleSP exe_module_sp(target.GetExecutableModule());
if (exe_module_sp.get())
return exe_module_sp->GetFileSpec().Exists();
return false;
}
Error
ProcessLinux::DoAttachToProcessWithID(lldb::pid_t pid)
{
return Error(1, eErrorTypeGeneric);
}
Error
ProcessLinux::WillLaunch(Module* module)
{
Error error;
return error;
}
Error
ProcessLinux::DoLaunch(Module *module,
char const *argv[],
char const *envp[],
uint32_t launch_flags,
const char *stdin_path,
const char *stdout_path,
const char *stderr_path,
const char *working_directory)
{
Error error;
assert(m_monitor == NULL);
SetPrivateState(eStateLaunching);
m_monitor = new ProcessMonitor(this, module,
argv, envp,
stdin_path, stdout_path, stderr_path,
error);
m_module = module;
if (!error.Success())
return error;
SetID(m_monitor->GetPID());
return error;
}
void
ProcessLinux::DidLaunch()
{
}
Error
ProcessLinux::DoResume()
{
assert(GetPrivateState() == eStateStopped && "Bad state for DoResume!");
// Set our state to running. This ensures inferior threads do not post a
// state change first.
SetPrivateState(eStateRunning);
bool did_resume = false;
uint32_t thread_count = m_thread_list.GetSize(false);
for (uint32_t i = 0; i < thread_count; ++i)
{
LinuxThread *thread = static_cast<LinuxThread*>(
m_thread_list.GetThreadAtIndex(i, false).get());
did_resume = thread->Resume() || did_resume;
}
assert(did_resume && "Process resume failed!");
return Error();
}
addr_t
ProcessLinux::GetImageInfoAddress()
{
Target *target = &GetTarget();
ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
Address addr = obj_file->GetImageInfoAddress();
if (addr.IsValid())
return addr.GetLoadAddress(target);
else
return LLDB_INVALID_ADDRESS;
}
Error
ProcessLinux::DoHalt(bool &caused_stop)
{
return Error(1, eErrorTypeGeneric);
}
Error
ProcessLinux::DoDetach()
{
return Error(1, eErrorTypeGeneric);
}
Error
ProcessLinux::DoSignal(int signal)
{
return Error(1, eErrorTypeGeneric);
}
Error
ProcessLinux::DoDestroy()
{
Error error;
if (!HasExited())
{
// Shut down the private state thread as we will synchronize with events
// ourselves. Discard all current thread plans.
PausePrivateStateThread();
GetThreadList().DiscardThreadPlans();
// Bringing the inferior into limbo will be caught by our monitor
// thread, in turn updating the process state.
if (!m_monitor->BringProcessIntoLimbo())
{
error.SetErrorToGenericError();
error.SetErrorString("Process termination failed.");
return error;
}
// Wait for the event to arrive. This is guaranteed to be an exit event.
StateType state;
EventSP event;
do {
TimeValue timeout_time;
timeout_time = TimeValue::Now();
timeout_time.OffsetWithSeconds(2);
state = WaitForStateChangedEventsPrivate(&timeout_time, event);
} while (state != eStateExited && state != eStateInvalid);
// Check if we timed out waiting for the exit event to arrive.
if (state == eStateInvalid)
error.SetErrorString("ProcessLinux::DoDestroy timed out.");
// Restart standard event handling and send the process the final kill,
// driving it out of limbo.
ResumePrivateStateThread();
}
if (kill(m_monitor->GetPID(), SIGKILL) && error.Success())
error.SetErrorToErrno();
return error;
}
void
ProcessLinux::SendMessage(const ProcessMessage &message)
{
Mutex::Locker lock(m_message_mutex);
switch (message.GetKind())
{
default:
SetPrivateState(eStateStopped);
break;
case ProcessMessage::eInvalidMessage:
return;
case ProcessMessage::eExitMessage:
SetExitStatus(message.GetExitStatus(), NULL);
break;
case ProcessMessage::eSignalMessage:
SetExitStatus(-1, NULL);
break;
}
m_message_queue.push(message);
}
void
ProcessLinux::RefreshStateAfterStop()
{
Mutex::Locker lock(m_message_mutex);
if (m_message_queue.empty())
return;
ProcessMessage &message = m_message_queue.front();
// Resolve the thread this message corresponds to.
lldb::tid_t tid = message.GetTID();
LinuxThread *thread = static_cast<LinuxThread*>(
GetThreadList().FindThreadByID(tid, false).get());
switch (message.GetKind())
{
default:
assert(false && "Unexpected message kind!");
break;
case ProcessMessage::eExitMessage:
case ProcessMessage::eSignalMessage:
thread->ExitNotify();
break;
case ProcessMessage::eTraceMessage:
thread->TraceNotify();
break;
case ProcessMessage::eBreakpointMessage:
thread->BreakNotify();
break;
}
m_message_queue.pop();
}
bool
ProcessLinux::IsAlive()
{
StateType state = GetPrivateState();
return state != eStateExited && state != eStateInvalid;
}
size_t
ProcessLinux::DoReadMemory(addr_t vm_addr,
void *buf, size_t size, Error &error)
{
return m_monitor->ReadMemory(vm_addr, buf, size, error);
}
size_t
ProcessLinux::DoWriteMemory(addr_t vm_addr, const void *buf, size_t size,
Error &error)
{
return m_monitor->WriteMemory(vm_addr, buf, size, error);
}
addr_t
ProcessLinux::DoAllocateMemory(size_t size, uint32_t permissions,
Error &error)
{
return 0;
}
addr_t
ProcessLinux::AllocateMemory(size_t size, uint32_t permissions, Error &error)
{
return 0;
}
Error
ProcessLinux::DoDeallocateMemory(lldb::addr_t ptr)
{
return Error(1, eErrorTypeGeneric);
}
size_t
ProcessLinux::GetSoftwareBreakpointTrapOpcode(BreakpointSite* bp_site)
{
static const uint8_t g_i386_opcode[] = { 0xCC };
ArchSpec arch = GetTarget().GetArchitecture();
const uint8_t *opcode = NULL;
size_t opcode_size = 0;
switch (arch.GetGenericCPUType())
{
default:
assert(false && "CPU type not supported!");
break;
case ArchSpec::eCPU_i386:
case ArchSpec::eCPU_x86_64:
opcode = g_i386_opcode;
opcode_size = sizeof(g_i386_opcode);
break;
}
bp_site->SetTrapOpcode(opcode, opcode_size);
return opcode_size;
}
Error
ProcessLinux::EnableBreakpoint(BreakpointSite *bp_site)
{
return EnableSoftwareBreakpoint(bp_site);
}
Error
ProcessLinux::DisableBreakpoint(BreakpointSite *bp_site)
{
return DisableSoftwareBreakpoint(bp_site);
}
uint32_t
ProcessLinux::UpdateThreadListIfNeeded()
{
// Do not allow recursive updates.
return m_thread_list.GetSize(false);
}
ByteOrder
ProcessLinux::GetByteOrder() const
{
// FIXME: We should be able to extract this value directly. See comment in
// ProcessLinux().
return m_byte_order;
}
//------------------------------------------------------------------------------
// ProcessInterface protocol.
const char *
ProcessLinux::GetPluginName()
{
return "process.linux";
}
const char *
ProcessLinux::GetShortPluginName()
{
return "process.linux";
}
uint32_t
ProcessLinux::GetPluginVersion()
{
return 1;
}
void
ProcessLinux::GetPluginCommandHelp(const char *command, Stream *strm)
{
}
Error
ProcessLinux::ExecutePluginCommand(Args &command, Stream *strm)
{
return Error(1, eErrorTypeGeneric);
}
Log *
ProcessLinux::EnablePluginLogging(Stream *strm, Args &command)
{
return NULL;
}
//------------------------------------------------------------------------------
// Utility functions.
bool
ProcessLinux::HasExited()
{
switch (GetPrivateState())
{
default:
break;
case eStateUnloaded:
case eStateCrashed:
case eStateDetached:
case eStateExited:
return true;
}
return false;
}