Steps for normalizing dynamic memrefs for tiled layout map
1. Check if original map is tiled layout. Only tiled layout is supported.
2. Create normalized memrefType. Dimensions that include dynamic dimensions
in the map output will be dynamic dimensions.
3. Create new maps to calculate each dimension size of new memref.
In tiled layout, the dimension size can be calculated by replacing
"floordiv <tile size>" with "ceildiv <tile size>" and
"mod <tile size>" with "<tile size>".
4. Create AffineApplyOp to apply the new maps. The output of AffineApplyOp is
dynamicSizes for new AllocOp.
5. Add the new dynamic sizes in new AllocOp.
This patch also set MemRefsNormalizable trant in CastOp and DimOp since
they used with dynamic memrefs.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D97655
759 lines
31 KiB
C++
759 lines
31 KiB
C++
//===- Utils.cpp ---- Misc utilities for code and data transformation -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements miscellaneous transformation routines for non-loop IR
|
|
// structures.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/Utils.h"
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
#include "mlir/Analysis/Utils.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/Support/MathExtras.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
using namespace mlir;
|
|
|
|
// Perform the replacement in `op`.
|
|
LogicalResult mlir::replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef,
|
|
Operation *op,
|
|
ArrayRef<Value> extraIndices,
|
|
AffineMap indexRemap,
|
|
ArrayRef<Value> extraOperands,
|
|
ArrayRef<Value> symbolOperands,
|
|
bool allowNonDereferencingOps) {
|
|
unsigned newMemRefRank = newMemRef.getType().cast<MemRefType>().getRank();
|
|
(void)newMemRefRank; // unused in opt mode
|
|
unsigned oldMemRefRank = oldMemRef.getType().cast<MemRefType>().getRank();
|
|
(void)oldMemRefRank; // unused in opt mode
|
|
if (indexRemap) {
|
|
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
|
|
"symbolic operand count mismatch");
|
|
assert(indexRemap.getNumInputs() ==
|
|
extraOperands.size() + oldMemRefRank + symbolOperands.size());
|
|
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
|
|
} else {
|
|
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
|
|
}
|
|
|
|
// Assert same elemental type.
|
|
assert(oldMemRef.getType().cast<MemRefType>().getElementType() ==
|
|
newMemRef.getType().cast<MemRefType>().getElementType());
|
|
|
|
SmallVector<unsigned, 2> usePositions;
|
|
for (const auto &opEntry : llvm::enumerate(op->getOperands())) {
|
|
if (opEntry.value() == oldMemRef)
|
|
usePositions.push_back(opEntry.index());
|
|
}
|
|
|
|
// If memref doesn't appear, nothing to do.
|
|
if (usePositions.empty())
|
|
return success();
|
|
|
|
if (usePositions.size() > 1) {
|
|
// TODO: extend it for this case when needed (rare).
|
|
assert(false && "multiple dereferencing uses in a single op not supported");
|
|
return failure();
|
|
}
|
|
|
|
unsigned memRefOperandPos = usePositions.front();
|
|
|
|
OpBuilder builder(op);
|
|
// The following checks if op is dereferencing memref and performs the access
|
|
// index rewrites.
|
|
auto affMapAccInterface = dyn_cast<AffineMapAccessInterface>(op);
|
|
if (!affMapAccInterface) {
|
|
if (!allowNonDereferencingOps) {
|
|
// Failure: memref used in a non-dereferencing context (potentially
|
|
// escapes); no replacement in these cases unless allowNonDereferencingOps
|
|
// is set.
|
|
return failure();
|
|
}
|
|
op->setOperand(memRefOperandPos, newMemRef);
|
|
return success();
|
|
}
|
|
// Perform index rewrites for the dereferencing op and then replace the op
|
|
NamedAttribute oldMapAttrPair =
|
|
affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef);
|
|
AffineMap oldMap = oldMapAttrPair.second.cast<AffineMapAttr>().getValue();
|
|
unsigned oldMapNumInputs = oldMap.getNumInputs();
|
|
SmallVector<Value, 4> oldMapOperands(
|
|
op->operand_begin() + memRefOperandPos + 1,
|
|
op->operand_begin() + memRefOperandPos + 1 + oldMapNumInputs);
|
|
|
|
// Apply 'oldMemRefOperands = oldMap(oldMapOperands)'.
|
|
SmallVector<Value, 4> oldMemRefOperands;
|
|
SmallVector<Value, 4> affineApplyOps;
|
|
oldMemRefOperands.reserve(oldMemRefRank);
|
|
if (oldMap != builder.getMultiDimIdentityMap(oldMap.getNumDims())) {
|
|
for (auto resultExpr : oldMap.getResults()) {
|
|
auto singleResMap = AffineMap::get(oldMap.getNumDims(),
|
|
oldMap.getNumSymbols(), resultExpr);
|
|
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
|
|
oldMapOperands);
|
|
oldMemRefOperands.push_back(afOp);
|
|
affineApplyOps.push_back(afOp);
|
|
}
|
|
} else {
|
|
oldMemRefOperands.assign(oldMapOperands.begin(), oldMapOperands.end());
|
|
}
|
|
|
|
// Construct new indices as a remap of the old ones if a remapping has been
|
|
// provided. The indices of a memref come right after it, i.e.,
|
|
// at position memRefOperandPos + 1.
|
|
SmallVector<Value, 4> remapOperands;
|
|
remapOperands.reserve(extraOperands.size() + oldMemRefRank +
|
|
symbolOperands.size());
|
|
remapOperands.append(extraOperands.begin(), extraOperands.end());
|
|
remapOperands.append(oldMemRefOperands.begin(), oldMemRefOperands.end());
|
|
remapOperands.append(symbolOperands.begin(), symbolOperands.end());
|
|
|
|
SmallVector<Value, 4> remapOutputs;
|
|
remapOutputs.reserve(oldMemRefRank);
|
|
|
|
if (indexRemap &&
|
|
indexRemap != builder.getMultiDimIdentityMap(indexRemap.getNumDims())) {
|
|
// Remapped indices.
|
|
for (auto resultExpr : indexRemap.getResults()) {
|
|
auto singleResMap = AffineMap::get(
|
|
indexRemap.getNumDims(), indexRemap.getNumSymbols(), resultExpr);
|
|
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
|
|
remapOperands);
|
|
remapOutputs.push_back(afOp);
|
|
affineApplyOps.push_back(afOp);
|
|
}
|
|
} else {
|
|
// No remapping specified.
|
|
remapOutputs.assign(remapOperands.begin(), remapOperands.end());
|
|
}
|
|
|
|
SmallVector<Value, 4> newMapOperands;
|
|
newMapOperands.reserve(newMemRefRank);
|
|
|
|
// Prepend 'extraIndices' in 'newMapOperands'.
|
|
for (Value extraIndex : extraIndices) {
|
|
assert(extraIndex.getDefiningOp()->getNumResults() == 1 &&
|
|
"single result op's expected to generate these indices");
|
|
assert((isValidDim(extraIndex) || isValidSymbol(extraIndex)) &&
|
|
"invalid memory op index");
|
|
newMapOperands.push_back(extraIndex);
|
|
}
|
|
|
|
// Append 'remapOutputs' to 'newMapOperands'.
|
|
newMapOperands.append(remapOutputs.begin(), remapOutputs.end());
|
|
|
|
// Create new fully composed AffineMap for new op to be created.
|
|
assert(newMapOperands.size() == newMemRefRank);
|
|
auto newMap = builder.getMultiDimIdentityMap(newMemRefRank);
|
|
// TODO: Avoid creating/deleting temporary AffineApplyOps here.
|
|
fullyComposeAffineMapAndOperands(&newMap, &newMapOperands);
|
|
newMap = simplifyAffineMap(newMap);
|
|
canonicalizeMapAndOperands(&newMap, &newMapOperands);
|
|
// Remove any affine.apply's that became dead as a result of composition.
|
|
for (Value value : affineApplyOps)
|
|
if (value.use_empty())
|
|
value.getDefiningOp()->erase();
|
|
|
|
OperationState state(op->getLoc(), op->getName());
|
|
// Construct the new operation using this memref.
|
|
state.operands.reserve(op->getNumOperands() + extraIndices.size());
|
|
// Insert the non-memref operands.
|
|
state.operands.append(op->operand_begin(),
|
|
op->operand_begin() + memRefOperandPos);
|
|
// Insert the new memref value.
|
|
state.operands.push_back(newMemRef);
|
|
|
|
// Insert the new memref map operands.
|
|
state.operands.append(newMapOperands.begin(), newMapOperands.end());
|
|
|
|
// Insert the remaining operands unmodified.
|
|
state.operands.append(op->operand_begin() + memRefOperandPos + 1 +
|
|
oldMapNumInputs,
|
|
op->operand_end());
|
|
|
|
// Result types don't change. Both memref's are of the same elemental type.
|
|
state.types.reserve(op->getNumResults());
|
|
for (auto result : op->getResults())
|
|
state.types.push_back(result.getType());
|
|
|
|
// Add attribute for 'newMap', other Attributes do not change.
|
|
auto newMapAttr = AffineMapAttr::get(newMap);
|
|
for (auto namedAttr : op->getAttrs()) {
|
|
if (namedAttr.first == oldMapAttrPair.first)
|
|
state.attributes.push_back({namedAttr.first, newMapAttr});
|
|
else
|
|
state.attributes.push_back(namedAttr);
|
|
}
|
|
|
|
// Create the new operation.
|
|
auto *repOp = builder.createOperation(state);
|
|
op->replaceAllUsesWith(repOp);
|
|
op->erase();
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult mlir::replaceAllMemRefUsesWith(
|
|
Value oldMemRef, Value newMemRef, ArrayRef<Value> extraIndices,
|
|
AffineMap indexRemap, ArrayRef<Value> extraOperands,
|
|
ArrayRef<Value> symbolOperands, Operation *domInstFilter,
|
|
Operation *postDomInstFilter, bool allowNonDereferencingOps,
|
|
bool replaceInDeallocOp) {
|
|
unsigned newMemRefRank = newMemRef.getType().cast<MemRefType>().getRank();
|
|
(void)newMemRefRank; // unused in opt mode
|
|
unsigned oldMemRefRank = oldMemRef.getType().cast<MemRefType>().getRank();
|
|
(void)oldMemRefRank;
|
|
if (indexRemap) {
|
|
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
|
|
"symbol operand count mismatch");
|
|
assert(indexRemap.getNumInputs() ==
|
|
extraOperands.size() + oldMemRefRank + symbolOperands.size());
|
|
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
|
|
} else {
|
|
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
|
|
}
|
|
|
|
// Assert same elemental type.
|
|
assert(oldMemRef.getType().cast<MemRefType>().getElementType() ==
|
|
newMemRef.getType().cast<MemRefType>().getElementType());
|
|
|
|
std::unique_ptr<DominanceInfo> domInfo;
|
|
std::unique_ptr<PostDominanceInfo> postDomInfo;
|
|
if (domInstFilter)
|
|
domInfo = std::make_unique<DominanceInfo>(
|
|
domInstFilter->getParentOfType<FuncOp>());
|
|
|
|
if (postDomInstFilter)
|
|
postDomInfo = std::make_unique<PostDominanceInfo>(
|
|
postDomInstFilter->getParentOfType<FuncOp>());
|
|
|
|
// Walk all uses of old memref; collect ops to perform replacement. We use a
|
|
// DenseSet since an operation could potentially have multiple uses of a
|
|
// memref (although rare), and the replacement later is going to erase ops.
|
|
DenseSet<Operation *> opsToReplace;
|
|
for (auto *op : oldMemRef.getUsers()) {
|
|
// Skip this use if it's not dominated by domInstFilter.
|
|
if (domInstFilter && !domInfo->dominates(domInstFilter, op))
|
|
continue;
|
|
|
|
// Skip this use if it's not post-dominated by postDomInstFilter.
|
|
if (postDomInstFilter && !postDomInfo->postDominates(postDomInstFilter, op))
|
|
continue;
|
|
|
|
// Skip dealloc's - no replacement is necessary, and a memref replacement
|
|
// at other uses doesn't hurt these dealloc's.
|
|
if (isa<memref::DeallocOp>(op) && !replaceInDeallocOp)
|
|
continue;
|
|
|
|
// Check if the memref was used in a non-dereferencing context. It is fine
|
|
// for the memref to be used in a non-dereferencing way outside of the
|
|
// region where this replacement is happening.
|
|
if (!isa<AffineMapAccessInterface>(*op)) {
|
|
if (!allowNonDereferencingOps)
|
|
return failure();
|
|
// Currently we support the following non-dereferencing ops to be a
|
|
// candidate for replacement: Dealloc, CallOp and ReturnOp.
|
|
// TODO: Add support for other kinds of ops.
|
|
if (!op->hasTrait<OpTrait::MemRefsNormalizable>())
|
|
return failure();
|
|
}
|
|
|
|
// We'll first collect and then replace --- since replacement erases the op
|
|
// that has the use, and that op could be postDomFilter or domFilter itself!
|
|
opsToReplace.insert(op);
|
|
}
|
|
|
|
for (auto *op : opsToReplace) {
|
|
if (failed(replaceAllMemRefUsesWith(
|
|
oldMemRef, newMemRef, op, extraIndices, indexRemap, extraOperands,
|
|
symbolOperands, allowNonDereferencingOps)))
|
|
llvm_unreachable("memref replacement guaranteed to succeed here");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Given an operation, inserts one or more single result affine
|
|
/// apply operations, results of which are exclusively used by this operation
|
|
/// operation. The operands of these newly created affine apply ops are
|
|
/// guaranteed to be loop iterators or terminal symbols of a function.
|
|
///
|
|
/// Before
|
|
///
|
|
/// affine.for %i = 0 to #map(%N)
|
|
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
|
|
/// "send"(%idx, %A, ...)
|
|
/// "compute"(%idx)
|
|
///
|
|
/// After
|
|
///
|
|
/// affine.for %i = 0 to #map(%N)
|
|
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
|
|
/// "send"(%idx, %A, ...)
|
|
/// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i)
|
|
/// "compute"(%idx_)
|
|
///
|
|
/// This allows applying different transformations on send and compute (for eg.
|
|
/// different shifts/delays).
|
|
///
|
|
/// Returns nullptr either if none of opInst's operands were the result of an
|
|
/// affine.apply and thus there was no affine computation slice to create, or if
|
|
/// all the affine.apply op's supplying operands to this opInst did not have any
|
|
/// uses besides this opInst; otherwise returns the list of affine.apply
|
|
/// operations created in output argument `sliceOps`.
|
|
void mlir::createAffineComputationSlice(
|
|
Operation *opInst, SmallVectorImpl<AffineApplyOp> *sliceOps) {
|
|
// Collect all operands that are results of affine apply ops.
|
|
SmallVector<Value, 4> subOperands;
|
|
subOperands.reserve(opInst->getNumOperands());
|
|
for (auto operand : opInst->getOperands())
|
|
if (isa_and_nonnull<AffineApplyOp>(operand.getDefiningOp()))
|
|
subOperands.push_back(operand);
|
|
|
|
// Gather sequence of AffineApplyOps reachable from 'subOperands'.
|
|
SmallVector<Operation *, 4> affineApplyOps;
|
|
getReachableAffineApplyOps(subOperands, affineApplyOps);
|
|
// Skip transforming if there are no affine maps to compose.
|
|
if (affineApplyOps.empty())
|
|
return;
|
|
|
|
// Check if all uses of the affine apply op's lie only in this op op, in
|
|
// which case there would be nothing to do.
|
|
bool localized = true;
|
|
for (auto *op : affineApplyOps) {
|
|
for (auto result : op->getResults()) {
|
|
for (auto *user : result.getUsers()) {
|
|
if (user != opInst) {
|
|
localized = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (localized)
|
|
return;
|
|
|
|
OpBuilder builder(opInst);
|
|
SmallVector<Value, 4> composedOpOperands(subOperands);
|
|
auto composedMap = builder.getMultiDimIdentityMap(composedOpOperands.size());
|
|
fullyComposeAffineMapAndOperands(&composedMap, &composedOpOperands);
|
|
|
|
// Create an affine.apply for each of the map results.
|
|
sliceOps->reserve(composedMap.getNumResults());
|
|
for (auto resultExpr : composedMap.getResults()) {
|
|
auto singleResMap = AffineMap::get(composedMap.getNumDims(),
|
|
composedMap.getNumSymbols(), resultExpr);
|
|
sliceOps->push_back(builder.create<AffineApplyOp>(
|
|
opInst->getLoc(), singleResMap, composedOpOperands));
|
|
}
|
|
|
|
// Construct the new operands that include the results from the composed
|
|
// affine apply op above instead of existing ones (subOperands). So, they
|
|
// differ from opInst's operands only for those operands in 'subOperands', for
|
|
// which they will be replaced by the corresponding one from 'sliceOps'.
|
|
SmallVector<Value, 4> newOperands(opInst->getOperands());
|
|
for (unsigned i = 0, e = newOperands.size(); i < e; i++) {
|
|
// Replace the subOperands from among the new operands.
|
|
unsigned j, f;
|
|
for (j = 0, f = subOperands.size(); j < f; j++) {
|
|
if (newOperands[i] == subOperands[j])
|
|
break;
|
|
}
|
|
if (j < subOperands.size()) {
|
|
newOperands[i] = (*sliceOps)[j];
|
|
}
|
|
}
|
|
for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++) {
|
|
opInst->setOperand(idx, newOperands[idx]);
|
|
}
|
|
}
|
|
|
|
/// Enum to set patterns of affine expr in tiled-layout map.
|
|
/// TileFloorDiv: <dim expr> div <tile size>
|
|
/// TileMod: <dim expr> mod <tile size>
|
|
/// TileNone: None of the above
|
|
/// Example:
|
|
/// #tiled_2d_128x256 = affine_map<(d0, d1)
|
|
/// -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>
|
|
/// "d0 div 128" and "d1 div 256" ==> TileFloorDiv
|
|
/// "d0 mod 128" and "d1 mod 256" ==> TileMod
|
|
enum TileExprPattern { TileFloorDiv, TileMod, TileNone };
|
|
|
|
/// Check if `map` is a tiled layout. In the tiled layout, specific k dimensions
|
|
/// being floordiv'ed by respective tile sizes appeare in a mod with the same
|
|
/// tile sizes, and no other expression involves those k dimensions. This
|
|
/// function stores a vector of tuples (`tileSizePos`) including AffineExpr for
|
|
/// tile size, positions of corresponding `floordiv` and `mod`. If it is not a
|
|
/// tiled layout, an empty vector is returned.
|
|
static LogicalResult getTileSizePos(
|
|
AffineMap map,
|
|
SmallVectorImpl<std::tuple<AffineExpr, unsigned, unsigned>> &tileSizePos) {
|
|
// Create `floordivExprs` which is a vector of tuples including LHS and RHS of
|
|
// `floordiv` and its position in `map` output.
|
|
// Example: #tiled_2d_128x256 = affine_map<(d0, d1)
|
|
// -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>
|
|
// In this example, `floordivExprs` includes {d0, 128, 0} and {d1, 256, 1}.
|
|
SmallVector<std::tuple<AffineExpr, AffineExpr, unsigned>, 4> floordivExprs;
|
|
unsigned pos = 0;
|
|
for (AffineExpr expr : map.getResults()) {
|
|
if (expr.getKind() == AffineExprKind::FloorDiv) {
|
|
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
|
|
if (binaryExpr.getRHS().isa<AffineConstantExpr>())
|
|
floordivExprs.emplace_back(
|
|
std::make_tuple(binaryExpr.getLHS(), binaryExpr.getRHS(), pos));
|
|
}
|
|
pos++;
|
|
}
|
|
// Not tiled layout if `floordivExprs` is empty.
|
|
if (floordivExprs.empty()) {
|
|
tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{};
|
|
return success();
|
|
}
|
|
|
|
// Check if LHS of `floordiv` is used in LHS of `mod`. If not used, `map` is
|
|
// not tiled layout.
|
|
for (std::tuple<AffineExpr, AffineExpr, unsigned> fexpr : floordivExprs) {
|
|
AffineExpr floordivExprLHS = std::get<0>(fexpr);
|
|
AffineExpr floordivExprRHS = std::get<1>(fexpr);
|
|
unsigned floordivPos = std::get<2>(fexpr);
|
|
|
|
// Walk affinexpr of `map` output except `fexpr`, and check if LHS and RHS
|
|
// of `fexpr` are used in LHS and RHS of `mod`. If LHS of `fexpr` is used
|
|
// other expr, the map is not tiled layout. Example of non tiled layout:
|
|
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 floordiv 256)>
|
|
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 128)>
|
|
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 256, d2 mod
|
|
// 256)>
|
|
bool found = false;
|
|
pos = 0;
|
|
for (AffineExpr expr : map.getResults()) {
|
|
bool notTiled = false;
|
|
if (pos != floordivPos) {
|
|
expr.walk([&](AffineExpr e) {
|
|
if (e == floordivExprLHS) {
|
|
if (expr.getKind() == AffineExprKind::Mod) {
|
|
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
|
|
// If LHS and RHS of `mod` are the same with those of floordiv.
|
|
if (floordivExprLHS == binaryExpr.getLHS() &&
|
|
floordivExprRHS == binaryExpr.getRHS()) {
|
|
// Save tile size (RHS of `mod`), and position of `floordiv` and
|
|
// `mod` if same expr with `mod` is not found yet.
|
|
if (!found) {
|
|
tileSizePos.emplace_back(
|
|
std::make_tuple(binaryExpr.getRHS(), floordivPos, pos));
|
|
found = true;
|
|
} else {
|
|
// Non tiled layout: Have multilpe `mod` with the same LHS.
|
|
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
|
|
// mod 256, d2 mod 256)>
|
|
notTiled = true;
|
|
}
|
|
} else {
|
|
// Non tiled layout: RHS of `mod` is different from `floordiv`.
|
|
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
|
|
// mod 128)>
|
|
notTiled = true;
|
|
}
|
|
} else {
|
|
// Non tiled layout: LHS is the same, but not `mod`.
|
|
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
|
|
// floordiv 256)>
|
|
notTiled = true;
|
|
}
|
|
}
|
|
});
|
|
}
|
|
if (notTiled) {
|
|
tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{};
|
|
return success();
|
|
}
|
|
pos++;
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Check if `dim` dimension of memrefType with `layoutMap` becomes dynamic
|
|
/// after normalization. Dimensions that include dynamic dimensions in the map
|
|
/// output will become dynamic dimensions. Return true if `dim` is dynamic
|
|
/// dimension.
|
|
///
|
|
/// Example:
|
|
/// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)>
|
|
///
|
|
/// If d1 is dynamic dimension, 2nd and 3rd dimension of map output are dynamic.
|
|
/// memref<4x?xf32, #map0> ==> memref<4x?x?xf32>
|
|
static bool
|
|
isNormalizedMemRefDynamicDim(unsigned dim, AffineMap layoutMap,
|
|
SmallVectorImpl<unsigned> &inMemrefTypeDynDims,
|
|
MLIRContext *context) {
|
|
bool isDynamicDim = false;
|
|
AffineExpr expr = layoutMap.getResults()[dim];
|
|
// Check if affine expr of the dimension includes dynamic dimension of input
|
|
// memrefType.
|
|
expr.walk([&inMemrefTypeDynDims, &isDynamicDim, &context](AffineExpr e) {
|
|
if (e.isa<AffineDimExpr>()) {
|
|
for (unsigned dm : inMemrefTypeDynDims) {
|
|
if (e == getAffineDimExpr(dm, context)) {
|
|
isDynamicDim = true;
|
|
}
|
|
}
|
|
}
|
|
});
|
|
return isDynamicDim;
|
|
}
|
|
|
|
/// Create affine expr to calculate dimension size for a tiled-layout map.
|
|
static AffineExpr createDimSizeExprForTiledLayout(AffineExpr oldMapOutput,
|
|
TileExprPattern pat) {
|
|
// Create map output for the patterns.
|
|
// "floordiv <tile size>" ==> "ceildiv <tile size>"
|
|
// "mod <tile size>" ==> "<tile size>"
|
|
AffineExpr newMapOutput;
|
|
AffineBinaryOpExpr binaryExpr = nullptr;
|
|
switch (pat) {
|
|
case TileExprPattern::TileMod:
|
|
binaryExpr = oldMapOutput.cast<AffineBinaryOpExpr>();
|
|
newMapOutput = binaryExpr.getRHS();
|
|
break;
|
|
case TileExprPattern::TileFloorDiv:
|
|
binaryExpr = oldMapOutput.cast<AffineBinaryOpExpr>();
|
|
newMapOutput = getAffineBinaryOpExpr(
|
|
AffineExprKind::CeilDiv, binaryExpr.getLHS(), binaryExpr.getRHS());
|
|
break;
|
|
default:
|
|
newMapOutput = oldMapOutput;
|
|
}
|
|
return newMapOutput;
|
|
}
|
|
|
|
/// Create new maps to calculate each dimension size of `newMemRefType`, and
|
|
/// create `newDynamicSizes` from them by using AffineApplyOp.
|
|
///
|
|
/// Steps for normalizing dynamic memrefs for a tiled layout map
|
|
/// Example:
|
|
/// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)>
|
|
/// %0 = dim %arg0, %c1 :memref<4x?xf32>
|
|
/// %1 = alloc(%0) : memref<4x?xf32, #map0>
|
|
///
|
|
/// (Before this function)
|
|
/// 1. Check if `map`(#map0) is a tiled layout using `getTileSizePos()`. Only
|
|
/// single layout map is supported.
|
|
///
|
|
/// 2. Create normalized memrefType using `isNormalizedMemRefDynamicDim()`. It
|
|
/// is memref<4x?x?xf32> in the above example.
|
|
///
|
|
/// (In this function)
|
|
/// 3. Create new maps to calculate each dimension of the normalized memrefType
|
|
/// using `createDimSizeExprForTiledLayout()`. In the tiled layout, the
|
|
/// dimension size can be calculated by replacing "floordiv <tile size>" with
|
|
/// "ceildiv <tile size>" and "mod <tile size>" with "<tile size>".
|
|
/// - New map in the above example
|
|
/// #map0 = affine_map<(d0, d1) -> (d0)>
|
|
/// #map1 = affine_map<(d0, d1) -> (d1 ceildiv 32)>
|
|
/// #map2 = affine_map<(d0, d1) -> (32)>
|
|
///
|
|
/// 4. Create AffineApplyOp to apply the new maps. The output of AffineApplyOp
|
|
/// is used in dynamicSizes of new AllocOp.
|
|
/// %0 = dim %arg0, %c1 : memref<4x?xf32>
|
|
/// %c4 = constant 4 : index
|
|
/// %1 = affine.apply #map1(%c4, %0)
|
|
/// %2 = affine.apply #map2(%c4, %0)
|
|
static void createNewDynamicSizes(MemRefType oldMemRefType,
|
|
MemRefType newMemRefType, AffineMap map,
|
|
memref::AllocOp *allocOp, OpBuilder b,
|
|
SmallVectorImpl<Value> &newDynamicSizes) {
|
|
// Create new input for AffineApplyOp.
|
|
SmallVector<Value, 4> inAffineApply;
|
|
ArrayRef<int64_t> oldMemRefShape = oldMemRefType.getShape();
|
|
unsigned dynIdx = 0;
|
|
for (unsigned d = 0; d < oldMemRefType.getRank(); ++d) {
|
|
if (oldMemRefShape[d] < 0) {
|
|
// Use dynamicSizes of allocOp for dynamic dimension.
|
|
inAffineApply.emplace_back(allocOp->dynamicSizes()[dynIdx]);
|
|
dynIdx++;
|
|
} else {
|
|
// Create ConstantOp for static dimension.
|
|
Attribute constantAttr =
|
|
b.getIntegerAttr(b.getIndexType(), oldMemRefShape[d]);
|
|
inAffineApply.emplace_back(
|
|
b.create<ConstantOp>(allocOp->getLoc(), constantAttr));
|
|
}
|
|
}
|
|
|
|
// Create new map to calculate each dimension size of new memref for each
|
|
// original map output. Only for dynamic dimesion of `newMemRefType`.
|
|
unsigned newDimIdx = 0;
|
|
ArrayRef<int64_t> newMemRefShape = newMemRefType.getShape();
|
|
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
|
|
(void)getTileSizePos(map, tileSizePos);
|
|
for (AffineExpr expr : map.getResults()) {
|
|
if (newMemRefShape[newDimIdx] < 0) {
|
|
// Create new maps to calculate each dimension size of new memref.
|
|
enum TileExprPattern pat = TileExprPattern::TileNone;
|
|
for (auto pos : tileSizePos) {
|
|
if (newDimIdx == std::get<1>(pos))
|
|
pat = TileExprPattern::TileFloorDiv;
|
|
else if (newDimIdx == std::get<2>(pos))
|
|
pat = TileExprPattern::TileMod;
|
|
}
|
|
AffineExpr newMapOutput = createDimSizeExprForTiledLayout(expr, pat);
|
|
AffineMap newMap =
|
|
AffineMap::get(map.getNumInputs(), map.getNumSymbols(), newMapOutput);
|
|
Value affineApp =
|
|
b.create<AffineApplyOp>(allocOp->getLoc(), newMap, inAffineApply);
|
|
newDynamicSizes.emplace_back(affineApp);
|
|
}
|
|
newDimIdx++;
|
|
}
|
|
}
|
|
|
|
// TODO: Currently works for static memrefs with a single layout map.
|
|
LogicalResult mlir::normalizeMemRef(memref::AllocOp *allocOp) {
|
|
MemRefType memrefType = allocOp->getType();
|
|
OpBuilder b(*allocOp);
|
|
|
|
// Fetch a new memref type after normalizing the old memref to have an
|
|
// identity map layout.
|
|
MemRefType newMemRefType =
|
|
normalizeMemRefType(memrefType, b, allocOp->symbolOperands().size());
|
|
if (newMemRefType == memrefType)
|
|
// Either memrefType already had an identity map or the map couldn't be
|
|
// transformed to an identity map.
|
|
return failure();
|
|
|
|
Value oldMemRef = allocOp->getResult();
|
|
|
|
SmallVector<Value, 4> symbolOperands(allocOp->symbolOperands());
|
|
AffineMap layoutMap = memrefType.getAffineMaps().front();
|
|
memref::AllocOp newAlloc;
|
|
// Check if `layoutMap` is a tiled layout. Only single layout map is
|
|
// supported for normalizing dynamic memrefs.
|
|
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
|
|
(void)getTileSizePos(layoutMap, tileSizePos);
|
|
if (newMemRefType.getNumDynamicDims() > 0 && !tileSizePos.empty()) {
|
|
MemRefType oldMemRefType = oldMemRef.getType().cast<MemRefType>();
|
|
SmallVector<Value, 4> newDynamicSizes;
|
|
createNewDynamicSizes(oldMemRefType, newMemRefType, layoutMap, allocOp, b,
|
|
newDynamicSizes);
|
|
// Add the new dynamic sizes in new AllocOp.
|
|
newAlloc =
|
|
b.create<memref::AllocOp>(allocOp->getLoc(), newMemRefType,
|
|
newDynamicSizes, allocOp->alignmentAttr());
|
|
} else {
|
|
newAlloc = b.create<memref::AllocOp>(allocOp->getLoc(), newMemRefType,
|
|
allocOp->alignmentAttr());
|
|
}
|
|
// Replace all uses of the old memref.
|
|
if (failed(replaceAllMemRefUsesWith(oldMemRef, /*newMemRef=*/newAlloc,
|
|
/*extraIndices=*/{},
|
|
/*indexRemap=*/layoutMap,
|
|
/*extraOperands=*/{},
|
|
/*symbolOperands=*/symbolOperands,
|
|
/*domInstFilter=*/nullptr,
|
|
/*postDomInstFilter=*/nullptr,
|
|
/*allowDereferencingOps=*/true))) {
|
|
// If it failed (due to escapes for example), bail out.
|
|
newAlloc.erase();
|
|
return failure();
|
|
}
|
|
// Replace any uses of the original alloc op and erase it. All remaining uses
|
|
// have to be dealloc's; RAMUW above would've failed otherwise.
|
|
assert(llvm::all_of(oldMemRef.getUsers(), [](Operation *op) {
|
|
return isa<memref::DeallocOp>(op);
|
|
}));
|
|
oldMemRef.replaceAllUsesWith(newAlloc);
|
|
allocOp->erase();
|
|
return success();
|
|
}
|
|
|
|
MemRefType mlir::normalizeMemRefType(MemRefType memrefType, OpBuilder b,
|
|
unsigned numSymbolicOperands) {
|
|
unsigned rank = memrefType.getRank();
|
|
if (rank == 0)
|
|
return memrefType;
|
|
|
|
ArrayRef<AffineMap> layoutMaps = memrefType.getAffineMaps();
|
|
if (layoutMaps.empty() ||
|
|
layoutMaps.front() == b.getMultiDimIdentityMap(rank)) {
|
|
// Either no maps is associated with this memref or this memref has
|
|
// a trivial (identity) map.
|
|
return memrefType;
|
|
}
|
|
|
|
// We don't do any checks for one-to-one'ness; we assume that it is
|
|
// one-to-one.
|
|
|
|
// Normalize only static memrefs and dynamic memrefs with a tiled-layout map
|
|
// for now.
|
|
// TODO: Normalize the other types of dynamic memrefs.
|
|
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
|
|
(void)getTileSizePos(layoutMaps.front(), tileSizePos);
|
|
if (memrefType.getNumDynamicDims() > 0 && tileSizePos.empty())
|
|
return memrefType;
|
|
|
|
// We have a single map that is not an identity map. Create a new memref
|
|
// with the right shape and an identity layout map.
|
|
ArrayRef<int64_t> shape = memrefType.getShape();
|
|
// FlatAffineConstraint may later on use symbolicOperands.
|
|
FlatAffineConstraints fac(rank, numSymbolicOperands);
|
|
SmallVector<unsigned, 4> memrefTypeDynDims;
|
|
for (unsigned d = 0; d < rank; ++d) {
|
|
// Use constraint system only in static dimensions.
|
|
if (shape[d] > 0) {
|
|
fac.addConstantLowerBound(d, 0);
|
|
fac.addConstantUpperBound(d, shape[d] - 1);
|
|
} else {
|
|
memrefTypeDynDims.emplace_back(d);
|
|
}
|
|
}
|
|
// We compose this map with the original index (logical) space to derive
|
|
// the upper bounds for the new index space.
|
|
AffineMap layoutMap = layoutMaps.front();
|
|
unsigned newRank = layoutMap.getNumResults();
|
|
if (failed(fac.composeMatchingMap(layoutMap)))
|
|
return memrefType;
|
|
// TODO: Handle semi-affine maps.
|
|
// Project out the old data dimensions.
|
|
fac.projectOut(newRank, fac.getNumIds() - newRank - fac.getNumLocalIds());
|
|
SmallVector<int64_t, 4> newShape(newRank);
|
|
for (unsigned d = 0; d < newRank; ++d) {
|
|
// Check if each dimension of normalized memrefType is dynamic.
|
|
bool isDynDim = isNormalizedMemRefDynamicDim(
|
|
d, layoutMap, memrefTypeDynDims, b.getContext());
|
|
if (isDynDim) {
|
|
newShape[d] = -1;
|
|
} else {
|
|
// The lower bound for the shape is always zero.
|
|
auto ubConst = fac.getConstantUpperBound(d);
|
|
// For a static memref and an affine map with no symbols, this is
|
|
// always bounded.
|
|
assert(ubConst.hasValue() && "should always have an upper bound");
|
|
if (ubConst.getValue() < 0)
|
|
// This is due to an invalid map that maps to a negative space.
|
|
return memrefType;
|
|
// If dimension of new memrefType is dynamic, the value is -1.
|
|
newShape[d] = ubConst.getValue() + 1;
|
|
}
|
|
}
|
|
|
|
// Create the new memref type after trivializing the old layout map.
|
|
MemRefType newMemRefType =
|
|
MemRefType::Builder(memrefType)
|
|
.setShape(newShape)
|
|
.setAffineMaps(b.getMultiDimIdentityMap(newRank));
|
|
|
|
return newMemRefType;
|
|
}
|