Fangrui Song 9beb467d92 MC: Store fragment content and fixups out-of-line
Moved `Contents` and `Fixups` SmallVector storage to MCSection, enabling
trivial destructors for most fragment subclasses and eliminating the need
for MCFragment::destroy in ~MCSection.

For appending content to the current section, use
getContentsForAppending. During assembler relaxation, prefer
setContents/setFixups, which may involve copying and reduce the benefits
of https://reviews.llvm.org/D145791.

Moving only Contents out-of-line caused a slight performance regression
(Alexis Engelke's 2024 prototype). By also moving Fragments out-of-line,
fragment destructors become trivial, resulting in
neglgible instructions:u increase for "stage2-O0-g" and [large max-rss decrease](https://llvm-compile-time-tracker.com/compare.php?from=84e82746c3ff63ec23a8b85e9efd4f7fccf92590&to=555a28c0b2f8250a9cf86fd267a04b0460283e15&stat=max-rss&linkStats=on)
for the "stage1-ReleaseLTO-g (link only)" benchmark.
(
An older version using fewer inline functions: https://llvm-compile-time-tracker.com/compare.php?from=bb982e733cfcda7e4cfb0583544f68af65211ed1&to=f12d55f97c47717d438951ecddecf8ebd28c296b&linkStats=on
)

Now using plain SmallVector in MCSection for storage, with potential for
future allocator optimizations, such as allocating `Contents` as the
trailing object of MCDataFragment. (GNU Assembler uses gnulib's obstack
for fragment management.)

Co-authored-by: Alexis Engelke <engelke@in.tum.de>

Pull Request: https://github.com/llvm/llvm-project/pull/146307
2025-07-01 00:21:12 -07:00
2025-04-14 16:54:14 +08:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
No description provided
Readme 2.4 GiB
Languages
LLVM 42%
C++ 31%
C 13%
Assembly 9.3%
MLIR 1.4%
Other 2.8%