Files
clang-p2996/lldb/source/Plugins/UnwindAssembly/x86/x86AssemblyInspectionEngine.cpp
Jason Molenda 00c1989a01 [lldb] Improve mid-function epilogue scanning for x86 (#110965)
The x86 assembly instruction scanner creates incorrect UnwindPlans when
a mid-function epilogue has a non-epilogue instruction in it.

The x86 instruction analysis which creates an UnwindPlan handles
mid-function epilogues by tracking "epilogue instructions" (register
loads from stack, stack pointer increasing, etc) and any UnwindPlan
updates which are NOT epilogue instructions update the "prologue
UnwindPlan" saved row. It detects a LEAVE/RET/unconditional JMP out of
the function and after that instruction, re-instates the "prologue Row".

There's a parallel piece of data tracked across the duration of the
function, current_sp_bytes_offset_from_fa, and we reflect the "value
after prologue instructions" in
prologue_completed_sp_bytes_offset_from_cfa. When the CFA is calculated
in terms of the frame pointer ($ebp/$rbp), we don't add changes to the
stack pointer to the UnwindPlan, so this separate mechanism is used for
the "current value" and the "last value at prologue setup".

(the x86 UnwindPlan generated writes "sp=CFA+0" as a register rule which
is formally correct, but it could also track the stack pointer value as
sp=$rsp+<x> and update this register rule every time $rsp is modified.)

This leads to a bug when there is an instruction in an epilogue which
isn't recognzied as an epilogue instruction.
prologue_completed_sp_bytes_offset_from_cfa is always set to the value
of current_sp_bytes_offset_from_fa unless the current instruction is an
epilogue instruction. With a non-epilogue instruction in the middle of
the epilogue, we suddenly copy a current_sp_bytes_offset_from_fa value
from the middle of the epilogue into this
prologue_completed_sp_bytes_offset_from_cfa. Once the epilogue is
finished, we restore the "prologue Row" and
prologue_completed_sp_bytes_offset_from_cfa. But now $rsp has a very
incorrect value in it.

This patch tracks when we've updated current_sp_bytes_offset_from_fa in
the current instruction analysis. If it was updated looking at an
epilogue instruction, `is_epilogue` will be set correctly. Otherwise
it's a "prologue" instruction and we should update
prologue_completed_sp_bytes_offset_from_cfa. Any instruction that is
unrecognized will leave prologue_completed_sp_bytes_offset_from_cfa
unmodified.

The actual instruction we hit this with was a BTRQ but I added a NOP to
the unit test which is only 1 byte and made the update to the unit test
a little simpler. This bug is hit with a NOP just as well.

UnwindAssemblyInstEmulation has a much better algorithm for handling
mid-function epilogues, which "forward" the current unwind state Row
when it sees branches within the function, to the target instruction
offset. This avoids detecting prologue/epilogue instructions altogether.

rdar://137153323
2024-10-03 09:59:37 -07:00

1625 lines
50 KiB
C++

//===-- x86AssemblyInspectionEngine.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "x86AssemblyInspectionEngine.h"
#include <memory>
#include "llvm-c/Disassembler.h"
#include "lldb/Core/Address.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/UnwindAssembly.h"
using namespace lldb_private;
using namespace lldb;
x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec &arch)
: m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM),
m_machine_sp_regnum(LLDB_INVALID_REGNUM),
m_machine_fp_regnum(LLDB_INVALID_REGNUM),
m_machine_alt_fp_regnum(LLDB_INVALID_REGNUM),
m_lldb_ip_regnum(LLDB_INVALID_REGNUM),
m_lldb_sp_regnum(LLDB_INVALID_REGNUM),
m_lldb_fp_regnum(LLDB_INVALID_REGNUM),
m_lldb_alt_fp_regnum(LLDB_INVALID_REGNUM), m_reg_map(), m_arch(arch),
m_cpu(k_cpu_unspecified), m_wordsize(-1),
m_register_map_initialized(false), m_disasm_context() {
m_disasm_context =
::LLVMCreateDisasm(arch.GetTriple().getTriple().c_str(), nullptr,
/*TagType=*/1, nullptr, nullptr);
}
x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() {
::LLVMDisasmDispose(m_disasm_context);
}
void x86AssemblyInspectionEngine::Initialize(RegisterContextSP &reg_ctx) {
m_cpu = k_cpu_unspecified;
m_wordsize = -1;
m_register_map_initialized = false;
const llvm::Triple::ArchType cpu = m_arch.GetMachine();
if (cpu == llvm::Triple::x86)
m_cpu = k_i386;
else if (cpu == llvm::Triple::x86_64)
m_cpu = k_x86_64;
if (m_cpu == k_cpu_unspecified)
return;
if (reg_ctx.get() == nullptr)
return;
if (m_cpu == k_i386) {
m_machine_ip_regnum = k_machine_eip;
m_machine_sp_regnum = k_machine_esp;
m_machine_fp_regnum = k_machine_ebp;
m_machine_alt_fp_regnum = k_machine_ebx;
m_wordsize = 4;
struct lldb_reg_info reginfo;
reginfo.name = "eax";
m_reg_map[k_machine_eax] = reginfo;
reginfo.name = "edx";
m_reg_map[k_machine_edx] = reginfo;
reginfo.name = "esp";
m_reg_map[k_machine_esp] = reginfo;
reginfo.name = "esi";
m_reg_map[k_machine_esi] = reginfo;
reginfo.name = "eip";
m_reg_map[k_machine_eip] = reginfo;
reginfo.name = "ecx";
m_reg_map[k_machine_ecx] = reginfo;
reginfo.name = "ebx";
m_reg_map[k_machine_ebx] = reginfo;
reginfo.name = "ebp";
m_reg_map[k_machine_ebp] = reginfo;
reginfo.name = "edi";
m_reg_map[k_machine_edi] = reginfo;
} else {
m_machine_ip_regnum = k_machine_rip;
m_machine_sp_regnum = k_machine_rsp;
m_machine_fp_regnum = k_machine_rbp;
m_machine_alt_fp_regnum = k_machine_rbx;
m_wordsize = 8;
struct lldb_reg_info reginfo;
reginfo.name = "rax";
m_reg_map[k_machine_rax] = reginfo;
reginfo.name = "rdx";
m_reg_map[k_machine_rdx] = reginfo;
reginfo.name = "rsp";
m_reg_map[k_machine_rsp] = reginfo;
reginfo.name = "rsi";
m_reg_map[k_machine_rsi] = reginfo;
reginfo.name = "r8";
m_reg_map[k_machine_r8] = reginfo;
reginfo.name = "r10";
m_reg_map[k_machine_r10] = reginfo;
reginfo.name = "r12";
m_reg_map[k_machine_r12] = reginfo;
reginfo.name = "r14";
m_reg_map[k_machine_r14] = reginfo;
reginfo.name = "rip";
m_reg_map[k_machine_rip] = reginfo;
reginfo.name = "rcx";
m_reg_map[k_machine_rcx] = reginfo;
reginfo.name = "rbx";
m_reg_map[k_machine_rbx] = reginfo;
reginfo.name = "rbp";
m_reg_map[k_machine_rbp] = reginfo;
reginfo.name = "rdi";
m_reg_map[k_machine_rdi] = reginfo;
reginfo.name = "r9";
m_reg_map[k_machine_r9] = reginfo;
reginfo.name = "r11";
m_reg_map[k_machine_r11] = reginfo;
reginfo.name = "r13";
m_reg_map[k_machine_r13] = reginfo;
reginfo.name = "r15";
m_reg_map[k_machine_r15] = reginfo;
}
for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
it != m_reg_map.end(); ++it) {
const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(it->second.name);
if (ri)
it->second.lldb_regnum = ri->kinds[eRegisterKindLLDB];
}
uint32_t lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
m_lldb_sp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
m_lldb_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
m_lldb_alt_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
m_lldb_ip_regnum = lldb_regno;
m_register_map_initialized = true;
}
void x86AssemblyInspectionEngine::Initialize(
std::vector<lldb_reg_info> &reg_info) {
m_cpu = k_cpu_unspecified;
m_wordsize = -1;
m_register_map_initialized = false;
const llvm::Triple::ArchType cpu = m_arch.GetMachine();
if (cpu == llvm::Triple::x86)
m_cpu = k_i386;
else if (cpu == llvm::Triple::x86_64)
m_cpu = k_x86_64;
if (m_cpu == k_cpu_unspecified)
return;
if (m_cpu == k_i386) {
m_machine_ip_regnum = k_machine_eip;
m_machine_sp_regnum = k_machine_esp;
m_machine_fp_regnum = k_machine_ebp;
m_machine_alt_fp_regnum = k_machine_ebx;
m_wordsize = 4;
struct lldb_reg_info reginfo;
reginfo.name = "eax";
m_reg_map[k_machine_eax] = reginfo;
reginfo.name = "edx";
m_reg_map[k_machine_edx] = reginfo;
reginfo.name = "esp";
m_reg_map[k_machine_esp] = reginfo;
reginfo.name = "esi";
m_reg_map[k_machine_esi] = reginfo;
reginfo.name = "eip";
m_reg_map[k_machine_eip] = reginfo;
reginfo.name = "ecx";
m_reg_map[k_machine_ecx] = reginfo;
reginfo.name = "ebx";
m_reg_map[k_machine_ebx] = reginfo;
reginfo.name = "ebp";
m_reg_map[k_machine_ebp] = reginfo;
reginfo.name = "edi";
m_reg_map[k_machine_edi] = reginfo;
} else {
m_machine_ip_regnum = k_machine_rip;
m_machine_sp_regnum = k_machine_rsp;
m_machine_fp_regnum = k_machine_rbp;
m_machine_alt_fp_regnum = k_machine_rbx;
m_wordsize = 8;
struct lldb_reg_info reginfo;
reginfo.name = "rax";
m_reg_map[k_machine_rax] = reginfo;
reginfo.name = "rdx";
m_reg_map[k_machine_rdx] = reginfo;
reginfo.name = "rsp";
m_reg_map[k_machine_rsp] = reginfo;
reginfo.name = "rsi";
m_reg_map[k_machine_rsi] = reginfo;
reginfo.name = "r8";
m_reg_map[k_machine_r8] = reginfo;
reginfo.name = "r10";
m_reg_map[k_machine_r10] = reginfo;
reginfo.name = "r12";
m_reg_map[k_machine_r12] = reginfo;
reginfo.name = "r14";
m_reg_map[k_machine_r14] = reginfo;
reginfo.name = "rip";
m_reg_map[k_machine_rip] = reginfo;
reginfo.name = "rcx";
m_reg_map[k_machine_rcx] = reginfo;
reginfo.name = "rbx";
m_reg_map[k_machine_rbx] = reginfo;
reginfo.name = "rbp";
m_reg_map[k_machine_rbp] = reginfo;
reginfo.name = "rdi";
m_reg_map[k_machine_rdi] = reginfo;
reginfo.name = "r9";
m_reg_map[k_machine_r9] = reginfo;
reginfo.name = "r11";
m_reg_map[k_machine_r11] = reginfo;
reginfo.name = "r13";
m_reg_map[k_machine_r13] = reginfo;
reginfo.name = "r15";
m_reg_map[k_machine_r15] = reginfo;
}
for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
it != m_reg_map.end(); ++it) {
for (size_t i = 0; i < reg_info.size(); ++i) {
if (::strcmp(reg_info[i].name, it->second.name) == 0) {
it->second.lldb_regnum = reg_info[i].lldb_regnum;
break;
}
}
}
uint32_t lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
m_lldb_sp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
m_lldb_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
m_lldb_alt_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
m_lldb_ip_regnum = lldb_regno;
m_register_map_initialized = true;
}
// This function expects an x86 native register number (i.e. the bits stripped
// out of the actual instruction), not an lldb register number.
//
// FIXME: This is ABI dependent, it shouldn't be hardcoded here.
bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno) {
if (m_cpu == k_i386) {
switch (machine_regno) {
case k_machine_ebx:
case k_machine_ebp: // not actually a nonvolatile but often treated as such
// by convention
case k_machine_esi:
case k_machine_edi:
case k_machine_esp:
return true;
default:
return false;
}
}
if (m_cpu == k_x86_64) {
switch (machine_regno) {
case k_machine_rbx:
case k_machine_rsp:
case k_machine_rbp: // not actually a nonvolatile but often treated as such
// by convention
case k_machine_r12:
case k_machine_r13:
case k_machine_r14:
case k_machine_r15:
return true;
default:
return false;
}
}
return false;
}
// Macro to detect if this is a REX mode prefix byte.
#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
// The high bit which should be added to the source register number (the "R"
// bit)
#define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)
// The high bit which should be added to the destination register number (the
// "B" bit)
#define REX_W_DSTREG(opcode) ((opcode)&0x1)
// pushq %rbp [0x55]
bool x86AssemblyInspectionEngine::push_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0x55;
}
// pushq $0 ; the first instruction in start() [0x6a 0x00]
bool x86AssemblyInspectionEngine::push_0_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0x6a && *(p + 1) == 0x0;
}
// pushq $0
// pushl $0
bool x86AssemblyInspectionEngine::push_imm_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0x68 || *p == 0x6a;
}
// pushl imm8(%esp)
//
// e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)' (same byte pattern for 'pushq
// 0x20(%rsp)' in an x86_64 program)
//
// 0xff (with opcode bits '6' in next byte, PUSH r/m32) 0x74 (ModR/M byte with
// three bits used to specify the opcode)
// mod == b01, opcode == b110, R/M == b100
// "+disp8"
// 0x24 (SIB byte - scaled index = 0, r32 == esp) 0x20 imm8 value
bool x86AssemblyInspectionEngine::push_extended_pattern_p() {
if (*m_cur_insn == 0xff) {
// Get the 3 opcode bits from the ModR/M byte
uint8_t opcode = (*(m_cur_insn + 1) >> 3) & 7;
if (opcode == 6) {
// I'm only looking for 0xff /6 here - I
// don't really care what value is being pushed, just that we're pushing
// a 32/64 bit value on to the stack is enough.
return true;
}
}
return false;
}
// instructions only valid in 32-bit mode:
// 0x0e - push cs
// 0x16 - push ss
// 0x1e - push ds
// 0x06 - push es
bool x86AssemblyInspectionEngine::push_misc_reg_p() {
uint8_t p = *m_cur_insn;
if (m_wordsize == 4) {
if (p == 0x0e || p == 0x16 || p == 0x1e || p == 0x06)
return true;
}
return false;
}
// pushq %rbx
// pushl %ebx
bool x86AssemblyInspectionEngine::push_reg_p(int &regno) {
uint8_t *p = m_cur_insn;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
regno_prefix_bit = (*p & 1) << 3;
p++;
}
if (*p >= 0x50 && *p <= 0x57) {
regno = (*p - 0x50) | regno_prefix_bit;
return true;
}
return false;
}
// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5] movl %esp, %ebp [0x8b
// 0xec] or [0x89 0xe5]
bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xec)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xe5)
return true;
return false;
}
// movq %rsp, %rbx [0x48 0x8b 0xdc] or [0x48 0x89 0xe3]
// movl %esp, %ebx [0x8b 0xdc] or [0x89 0xe3]
bool x86AssemblyInspectionEngine::mov_rsp_rbx_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xdc)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xe3)
return true;
return false;
}
// movq %rbp, %rsp [0x48 0x8b 0xe5] or [0x48 0x89 0xec]
// movl %ebp, %esp [0x8b 0xe5] or [0x89 0xec]
bool x86AssemblyInspectionEngine::mov_rbp_rsp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xe5)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xec)
return true;
return false;
}
// movq %rbx, %rsp [0x48 0x8b 0xe3] or [0x48 0x89 0xdc]
// movl %ebx, %esp [0x8b 0xe3] or [0x89 0xdc]
bool x86AssemblyInspectionEngine::mov_rbx_rsp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xe3)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xdc)
return true;
return false;
}
// subq $0x20, %rsp
bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xec) {
amount = (int8_t) * (p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xec) {
amount = (int32_t)extract_4(p + 2);
return true;
}
return false;
}
// addq $0x20, %rsp
bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xc4) {
amount = (int8_t) * (p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xc4) {
amount = (int32_t)extract_4(p + 2);
return true;
}
return false;
}
// lea esp, [esp - 0x28]
// lea esp, [esp + 0x28]
bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
// 8 bit displacement
if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) {
amount = (int8_t) * (p + 3);
return true;
}
// 32 bit displacement
if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) {
amount = (int32_t)extract_4(p + 3);
return true;
}
return false;
}
// lea -0x28(%ebp), %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::lea_rbp_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
++p;
// 8 bit displacement
if (*p == 0x65) {
amount = (int8_t)p[1];
return true;
}
// 32 bit displacement
if (*p == 0xa5) {
amount = (int32_t)extract_4(p + 1);
return true;
}
return false;
}
// lea -0x28(%ebx), %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::lea_rbx_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
++p;
// 8 bit displacement
if (*p == 0x63) {
amount = (int8_t)p[1];
return true;
}
// 32 bit displacement
if (*p == 0xa3) {
amount = (int32_t)extract_4(p + 1);
return true;
}
return false;
}
// and -0xfffffff0, %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::and_rsp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*p != 0x81 && *p != 0x83)
return false;
return *++p == 0xe4;
}
// popq %rbx
// popl %ebx
bool x86AssemblyInspectionEngine::pop_reg_p(int &regno) {
uint8_t *p = m_cur_insn;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
regno_prefix_bit = (*p & 1) << 3;
p++;
}
if (*p >= 0x58 && *p <= 0x5f) {
regno = (*p - 0x58) | regno_prefix_bit;
return true;
}
return false;
}
// popq %rbp [0x5d]
// popl %ebp [0x5d]
bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0x5d);
}
// instructions valid only in 32-bit mode:
// 0x1f - pop ds
// 0x07 - pop es
// 0x17 - pop ss
bool x86AssemblyInspectionEngine::pop_misc_reg_p() {
uint8_t p = *m_cur_insn;
if (m_wordsize == 4) {
if (p == 0x1f || p == 0x07 || p == 0x17)
return true;
}
return false;
}
// leave [0xc9]
bool x86AssemblyInspectionEngine::leave_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0xc9);
}
// call $0 [0xe8 0x0 0x0 0x0 0x0]
bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) &&
(*(p + 3) == 0x0) && (*(p + 4) == 0x0);
}
// Look for an instruction sequence storing a nonvolatile register on to the
// stack frame.
// movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
// movl %eax, -0xc(%ebp) [0x89 0x45 0xf4]
// The offset value returned in rbp_offset will be positive -- but it must be
// subtraced from the frame base register to get the actual location. The
// positive value returned for the offset is a convention used elsewhere for
// CFA offsets et al.
bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p(
int &regno, int &rbp_offset) {
uint8_t *p = m_cur_insn;
int src_reg_prefix_bit = 0;
int target_reg_prefix_bit = 0;
if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) {
src_reg_prefix_bit = REX_W_SRCREG(*p) << 3;
target_reg_prefix_bit = REX_W_DSTREG(*p) << 3;
if (target_reg_prefix_bit == 1) {
// rbp/ebp don't need a prefix bit - we know this isn't the reg we care
// about.
return false;
}
p++;
}
if (*p == 0x89) {
/* Mask off the 3-5 bits which indicate the destination register
if this is a ModR/M byte. */
int opcode_destreg_masked_out = *(p + 1) & (~0x38);
/* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
and three bits between them, e.g. 01nnn101
We're looking for a destination of ebp-disp8 or ebp-disp32. */
int immsize;
if (opcode_destreg_masked_out == 0x45)
immsize = 2;
else if (opcode_destreg_masked_out == 0x85)
immsize = 4;
else
return false;
int offset = 0;
if (immsize == 2)
offset = (int8_t) * (p + 2);
if (immsize == 4)
offset = (uint32_t)extract_4(p + 2);
if (offset > 0)
return false;
regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
rbp_offset = offset > 0 ? offset : -offset;
return true;
}
return false;
}
// Returns true if this is a jmp instruction where we can't
// know the destination address statically.
//
// ff e0 jmpq *%rax
// ff e1 jmpq *%rcx
// ff 60 28 jmpq *0x28(%rax)
// ff 60 60 jmpq *0x60(%rax)
bool x86AssemblyInspectionEngine::jmp_to_reg_p() {
if (*m_cur_insn != 0xff)
return false;
// The second byte is a ModR/M /4 byte, strip off the registers
uint8_t second_byte_sans_reg = *(m_cur_insn + 1) & ~7;
// [reg]
if (second_byte_sans_reg == 0x20)
return true;
// [reg]+disp8
if (second_byte_sans_reg == 0x60)
return true;
// [reg]+disp32
if (second_byte_sans_reg == 0xa0)
return true;
// reg
if (second_byte_sans_reg == 0xe0)
return true;
return false;
}
// Detect branches to fixed pc-relative offsets.
// Returns the offset from the address of the next instruction
// that may be branch/jumped to.
//
// Cannot determine the offset of a JMP that jumps to the address in
// a register ("jmpq *%rax") or offset from a register value
// ("jmpq *0x28(%rax)"), this method will return false on those
// instructions.
//
// These instructions all end in either a relative 8/16/32 bit value
// depending on the instruction and the current execution mode of the
// inferior process. Once we know the size of the opcode instruction,
// we can use the total instruction length to determine the size of
// the relative offset without having to compute it correctly.
bool x86AssemblyInspectionEngine::pc_rel_branch_or_jump_p (
const int instruction_length, int &offset)
{
int opcode_size = 0;
uint8_t b1 = m_cur_insn[0];
switch (b1) {
case 0x77: // JA/JNBE rel8
case 0x73: // JAE/JNB/JNC rel8
case 0x72: // JB/JC/JNAE rel8
case 0x76: // JBE/JNA rel8
case 0xe3: // JCXZ/JECXZ/JRCXZ rel8
case 0x74: // JE/JZ rel8
case 0x7f: // JG/JNLE rel8
case 0x7d: // JGE/JNL rel8
case 0x7c: // JL/JNGE rel8
case 0x7e: // JNG/JLE rel8
case 0x71: // JNO rel8
case 0x7b: // JNP/JPO rel8
case 0x79: // JNS rel8
case 0x75: // JNE/JNZ rel8
case 0x70: // JO rel8
case 0x7a: // JP/JPE rel8
case 0x78: // JS rel8
case 0xeb: // JMP rel8
case 0xe9: // JMP rel16/rel32
opcode_size = 1;
break;
default:
break;
}
if (b1 == 0x0f && opcode_size == 0) {
uint8_t b2 = m_cur_insn[1];
switch (b2) {
case 0x87: // JA/JNBE rel16/rel32
case 0x86: // JBE/JNA rel16/rel32
case 0x84: // JE/JZ rel16/rel32
case 0x8f: // JG/JNLE rel16/rel32
case 0x8d: // JNL/JGE rel16/rel32
case 0x8e: // JLE rel16/rel32
case 0x82: // JB/JC/JNAE rel16/rel32
case 0x83: // JAE/JNB/JNC rel16/rel32
case 0x85: // JNE/JNZ rel16/rel32
case 0x8c: // JL/JNGE rel16/rel32
case 0x81: // JNO rel16/rel32
case 0x8b: // JNP/JPO rel16/rel32
case 0x89: // JNS rel16/rel32
case 0x80: // JO rel16/rel32
case 0x8a: // JP rel16/rel32
case 0x88: // JS rel16/rel32
opcode_size = 2;
break;
default:
break;
}
}
if (opcode_size == 0)
return false;
offset = 0;
if (instruction_length - opcode_size == 1) {
int8_t rel8 = (int8_t) *(m_cur_insn + opcode_size);
offset = rel8;
} else if (instruction_length - opcode_size == 2) {
int16_t rel16 = extract_2_signed (m_cur_insn + opcode_size);
offset = rel16;
} else if (instruction_length - opcode_size == 4) {
int32_t rel32 = extract_4_signed (m_cur_insn + opcode_size);
offset = rel32;
} else {
return false;
}
return true;
}
// Returns true if this instruction is a intra-function branch or jump -
// a branch/jump within the bounds of this same function.
// Cannot predict where a jump through a register value ("jmpq *%rax")
// will go, so it will return false on that instruction.
bool x86AssemblyInspectionEngine::local_branch_p (
const addr_t current_func_text_offset,
const AddressRange &func_range,
const int instruction_length,
addr_t &target_insn_offset) {
int offset;
if (pc_rel_branch_or_jump_p (instruction_length, offset) && offset != 0) {
addr_t next_pc_value = current_func_text_offset + instruction_length;
if (offset < 0 && addr_t(-offset) > current_func_text_offset) {
// Branch target is before the start of this function
return false;
}
if (offset + next_pc_value >= func_range.GetByteSize()) {
// Branch targets outside this function's bounds
return false;
}
// This instruction branches to target_insn_offset (byte offset into the function)
target_insn_offset = next_pc_value + offset;
return true;
}
return false;
}
// Returns true if this instruction is a inter-function branch or jump - a
// branch/jump to another function.
// Cannot predict where a jump through a register value ("jmpq *%rax")
// will go, so it will return false on that instruction.
bool x86AssemblyInspectionEngine::non_local_branch_p (
const addr_t current_func_text_offset,
const AddressRange &func_range,
const int instruction_length) {
int offset;
addr_t target_insn_offset;
if (pc_rel_branch_or_jump_p (instruction_length, offset)) {
return !local_branch_p(current_func_text_offset,func_range,instruction_length,target_insn_offset);
}
return false;
}
// ret [0xc3] or [0xcb] or [0xc2 imm16] or [0xca imm16]
bool x86AssemblyInspectionEngine::ret_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0xc3 || *p == 0xc2 || *p == 0xca || *p == 0xcb;
}
uint16_t x86AssemblyInspectionEngine::extract_2(uint8_t *b) {
uint16_t v = 0;
for (int i = 1; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
int16_t x86AssemblyInspectionEngine::extract_2_signed(uint8_t *b) {
int16_t v = 0;
for (int i = 1; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b) {
uint32_t v = 0;
for (int i = 3; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
int32_t x86AssemblyInspectionEngine::extract_4_signed(uint8_t *b) {
int32_t v = 0;
for (int i = 3; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p,
int &length,
uint32_t buffer_remaining_bytes) {
uint32_t max_op_byte_size = std::min(buffer_remaining_bytes, m_arch.GetMaximumOpcodeByteSize());
llvm::SmallVector<uint8_t, 32> opcode_data;
opcode_data.resize(max_op_byte_size);
char out_string[512];
const size_t inst_size =
::LLVMDisasmInstruction(m_disasm_context, insn_p, max_op_byte_size, 0,
out_string, sizeof(out_string));
length = inst_size;
return true;
}
bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno(
int machine_regno, uint32_t &lldb_regno) {
MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.find(machine_regno);
if (it != m_reg_map.end()) {
lldb_regno = it->second.lldb_regnum;
return true;
}
return false;
}
bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly(
uint8_t *data, size_t size, AddressRange &func_range,
UnwindPlan &unwind_plan) {
unwind_plan.Clear();
if (data == nullptr || size == 0)
return false;
if (!m_register_map_initialized)
return false;
if (m_disasm_context == nullptr)
return false;
addr_t current_func_text_offset = 0;
int current_sp_bytes_offset_from_fa = 0;
bool is_aligned = false;
UnwindPlan::Row::AbstractRegisterLocation initial_regloc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
unwind_plan.SetPlanValidAddressRange(func_range);
unwind_plan.SetRegisterKind(eRegisterKindLLDB);
// At the start of the function, find the CFA by adding wordsize to the SP
// register
row->SetOffset(current_func_text_offset);
row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);
// caller's stack pointer value before the call insn is the CFA address
initial_regloc.SetIsCFAPlusOffset(0);
row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc);
// saved instruction pointer can be found at CFA - wordsize.
current_sp_bytes_offset_from_fa = m_wordsize;
initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc);
unwind_plan.AppendRow(row);
// Allocate a new Row, populate it with the existing Row contents.
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
// Track which registers have been saved so far in the prologue. If we see
// another push of that register, it's not part of the prologue. The register
// numbers used here are the machine register #'s (i386_register_numbers,
// x86_64_register_numbers).
std::vector<bool> saved_registers(32, false);
// Once the prologue has completed we'll save a copy of the unwind
// instructions If there is an epilogue in the middle of the function, after
// that epilogue we'll reinstate the unwind setup -- we assume that some code
// path jumps over the mid-function epilogue
UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
int prologue_completed_sp_bytes_offset_from_cfa = 0; // The sp value before the
// epilogue started executed
bool prologue_completed_is_aligned = false;
std::vector<bool> prologue_completed_saved_registers;
while (current_func_text_offset < size) {
int stack_offset, insn_len;
int machine_regno; // register numbers masked directly out of instructions
uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB
// numbering scheme
bool in_epilogue = false; // we're in the middle of an epilogue sequence
bool row_updated = false; // The UnwindPlan::Row 'row' has been updated
bool current_sp_offset_updated =
false; // current_sp_bytes_offset_from_fa has been updated this insn
m_cur_insn = data + current_func_text_offset;
if (!instruction_length(m_cur_insn, insn_len, size - current_func_text_offset)
|| insn_len == 0
|| insn_len > kMaxInstructionByteSize) {
// An unrecognized/junk instruction
break;
}
auto &cfa_value = row->GetCFAValue();
auto &afa_value = row->GetAFAValue();
auto fa_value_ptr = is_aligned ? &afa_value : &cfa_value;
if (mov_rsp_rbp_pattern_p()) {
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_fp_regnum, fa_value_ptr->GetOffset());
row_updated = true;
}
}
else if (mov_rsp_rbx_pattern_p()) {
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_alt_fp_regnum, fa_value_ptr->GetOffset());
row_updated = true;
}
}
else if (and_rsp_pattern_p()) {
current_sp_bytes_offset_from_fa = 0;
afa_value.SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
fa_value_ptr = &afa_value;
is_aligned = true;
row_updated = true;
}
else if (mov_rbp_rsp_pattern_p()) {
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
{
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum) {
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
current_sp_offset_updated = true;
}
}
else if (mov_rbx_rsp_pattern_p()) {
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum)
{
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum) {
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
current_sp_offset_updated = true;
}
}
// This is the start() function (or a pthread equivalent), it starts with a
// pushl $0x0 which puts the saved pc value of 0 on the stack. In this
// case we want to pretend we didn't see a stack movement at all --
// normally the saved pc value is already on the stack by the time the
// function starts executing.
else if (push_0_pattern_p()) {
}
else if (push_reg_p(machine_regno)) {
current_sp_bytes_offset_from_fa += m_wordsize;
current_sp_offset_updated = true;
// the PUSH instruction has moved the stack pointer - if the FA is set
// in terms of the stack pointer, we need to add a new row of
// instructions.
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
// record where non-volatile (callee-saved, spilled) registers are saved
// on the stack
if (nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
!saved_registers[machine_regno]) {
UnwindPlan::Row::AbstractRegisterLocation regloc;
if (is_aligned)
regloc.SetAtAFAPlusOffset(-current_sp_bytes_offset_from_fa);
else
regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
row->SetRegisterInfo(lldb_regno, regloc);
saved_registers[machine_regno] = true;
row_updated = true;
}
}
else if (pop_reg_p(machine_regno)) {
current_sp_bytes_offset_from_fa -= m_wordsize;
current_sp_offset_updated = true;
if (nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
saved_registers[machine_regno]) {
saved_registers[machine_regno] = false;
row->RemoveRegisterInfo(lldb_regno);
if (lldb_regno == fa_value_ptr->GetRegisterNumber()) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, fa_value_ptr->GetOffset());
}
in_epilogue = true;
row_updated = true;
}
// the POP instruction has moved the stack pointer - if the FA is set in
// terms of the stack pointer, we need to add a new row of instructions.
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
else if (pop_misc_reg_p()) {
current_sp_bytes_offset_from_fa -= m_wordsize;
current_sp_offset_updated = true;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
// The LEAVE instruction moves the value from rbp into rsp and pops a value
// off the stack into rbp (restoring the caller's rbp value). It is the
// opposite of ENTER, or 'push rbp, mov rsp rbp'.
else if (leave_pattern_p()) {
if (saved_registers[m_machine_fp_regnum]) {
saved_registers[m_machine_fp_regnum] = false;
row->RemoveRegisterInfo(m_lldb_fp_regnum);
row_updated = true;
}
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
{
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
{
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, fa_value_ptr->GetOffset());
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
}
current_sp_bytes_offset_from_fa -= m_wordsize;
current_sp_offset_updated = true;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
row_updated = true;
}
in_epilogue = true;
}
else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) &&
nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
!saved_registers[machine_regno]) {
saved_registers[machine_regno] = true;
UnwindPlan::Row::AbstractRegisterLocation regloc;
// stack_offset for 'movq %r15, -80(%rbp)' will be 80. In the Row, we
// want to express this as the offset from the FA. If the frame base is
// rbp (like the above instruction), the FA offset for rbp is probably
// 16. So we want to say that the value is stored at the FA address -
// 96.
if (is_aligned)
regloc.SetAtAFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
else
regloc.SetAtCFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
row->SetRegisterInfo(lldb_regno, regloc);
row_updated = true;
}
else if (sub_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_fa += stack_offset;
current_sp_offset_updated = true;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
else if (add_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_fa -= stack_offset;
current_sp_offset_updated = true;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
in_epilogue = true;
}
else if (push_extended_pattern_p() || push_imm_pattern_p() ||
push_misc_reg_p()) {
current_sp_bytes_offset_from_fa += m_wordsize;
current_sp_offset_updated = true;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
else if (lea_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_fa -= stack_offset;
current_sp_offset_updated = true;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
if (stack_offset > 0)
in_epilogue = true;
}
else if (lea_rbp_rsp_pattern_p(stack_offset)) {
if (is_aligned &&
cfa_value.GetRegisterNumber() == m_lldb_fp_regnum) {
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum) {
current_sp_bytes_offset_from_fa =
fa_value_ptr->GetOffset() - stack_offset;
current_sp_offset_updated = true;
}
}
else if (lea_rbx_rsp_pattern_p(stack_offset)) {
if (is_aligned &&
cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum) {
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum) {
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset() - stack_offset;
current_sp_offset_updated = true;
}
}
else if (prologue_completed_row.get() &&
(ret_pattern_p() ||
non_local_branch_p (current_func_text_offset, func_range, insn_len) ||
jmp_to_reg_p())) {
// Check if the current instruction is the end of an epilogue sequence,
// and if so, re-instate the prologue-completed unwind state.
// The current instruction is a branch/jump outside this function,
// a ret, or a jump through a register value which we cannot
// determine the effcts of. Verify that the stack frame state
// has been unwound to the same as it was at function entry to avoid
// mis-identifying a JMP instruction as an epilogue.
UnwindPlan::Row::AbstractRegisterLocation sp, pc;
if (row->GetRegisterInfo(m_lldb_sp_regnum, sp) &&
row->GetRegisterInfo(m_lldb_ip_regnum, pc)) {
// Any ret instruction variant is definitely indicative of an
// epilogue; for other insn patterns verify that we're back to
// the original unwind state.
if (ret_pattern_p() ||
(sp.IsCFAPlusOffset() && sp.GetOffset() == 0 &&
pc.IsAtCFAPlusOffset() && pc.GetOffset() == -m_wordsize)) {
// Reinstate the saved prologue setup for any instructions that come
// after the epilogue
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *prologue_completed_row.get();
row.reset(newrow);
current_sp_bytes_offset_from_fa =
prologue_completed_sp_bytes_offset_from_cfa;
current_sp_offset_updated = true;
is_aligned = prologue_completed_is_aligned;
saved_registers.clear();
saved_registers.resize(prologue_completed_saved_registers.size(), false);
for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) {
saved_registers[i] = prologue_completed_saved_registers[i];
}
in_epilogue = true;
row_updated = true;
}
}
}
// call next instruction
// call 0
// => pop %ebx
// This is used in i386 programs to get the PIC base address for finding
// global data
else if (call_next_insn_pattern_p()) {
current_sp_bytes_offset_from_fa += m_wordsize;
current_sp_offset_updated = true;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
if (row_updated) {
if (current_func_text_offset + insn_len < size) {
row->SetOffset(current_func_text_offset + insn_len);
unwind_plan.AppendRow(row);
// Allocate a new Row, populate it with the existing Row contents.
newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
}
}
if (!in_epilogue && row_updated) {
// If we're not in an epilogue sequence, save the updated Row
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
prologue_completed_row.reset(newrow);
prologue_completed_saved_registers.clear();
prologue_completed_saved_registers.resize(saved_registers.size(), false);
for (size_t i = 0; i < saved_registers.size(); ++i) {
prologue_completed_saved_registers[i] = saved_registers[i];
}
}
// We may change the sp value without adding a new Row necessarily -- keep
// track of it either way.
if (!in_epilogue && current_sp_offset_updated) {
prologue_completed_sp_bytes_offset_from_cfa =
current_sp_bytes_offset_from_fa;
prologue_completed_is_aligned = is_aligned;
}
m_cur_insn = m_cur_insn + insn_len;
current_func_text_offset += insn_len;
}
unwind_plan.SetSourceName("assembly insn profiling");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
return true;
}
bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite(
uint8_t *data, size_t size, AddressRange &func_range,
UnwindPlan &unwind_plan, RegisterContextSP &reg_ctx) {
Address addr_start = func_range.GetBaseAddress();
if (!addr_start.IsValid())
return false;
// We either need a live RegisterContext, or we need the UnwindPlan to
// already be in the lldb register numbering scheme.
if (reg_ctx.get() == nullptr &&
unwind_plan.GetRegisterKind() != eRegisterKindLLDB)
return false;
// Is original unwind_plan valid?
// unwind_plan should have at least one row which is ABI-default (CFA
// register is sp), and another row in mid-function.
if (unwind_plan.GetRowCount() < 2)
return false;
UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0);
if (first_row->GetOffset() != 0)
return false;
uint32_t cfa_reg = first_row->GetCFAValue().GetRegisterNumber();
if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
unwind_plan.GetRegisterKind(),
first_row->GetCFAValue().GetRegisterNumber());
}
if (cfa_reg != m_lldb_sp_regnum ||
first_row->GetCFAValue().GetOffset() != m_wordsize)
return false;
UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1);
size_t offset = 0;
int row_id = 1;
bool unwind_plan_updated = false;
UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row));
// After a mid-function epilogue we will need to re-insert the original
// unwind rules so unwinds work for the remainder of the function. These
// aren't common with clang/gcc on x86 but it is possible.
bool reinstate_unwind_state = false;
while (offset < size) {
m_cur_insn = data + offset;
int insn_len;
if (!instruction_length(m_cur_insn, insn_len, size - offset) ||
insn_len == 0 || insn_len > kMaxInstructionByteSize) {
// An unrecognized/junk instruction.
break;
}
// Advance offsets.
offset += insn_len;
// offset is pointing beyond the bounds of the function; stop looping.
if (offset >= size)
continue;
if (reinstate_unwind_state) {
UnwindPlan::RowSP new_row(new UnwindPlan::Row());
*new_row = *original_last_row;
new_row->SetOffset(offset);
unwind_plan.AppendRow(new_row);
row = std::make_shared<UnwindPlan::Row>();
*row = *new_row;
reinstate_unwind_state = false;
unwind_plan_updated = true;
continue;
}
// If we already have one row for this instruction, we can continue.
while (row_id < unwind_plan.GetRowCount() &&
unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) {
row_id++;
}
UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1);
if (original_row->GetOffset() == offset) {
*row = *original_row;
continue;
}
if (row_id == 0) {
// If we are here, compiler didn't generate CFI for prologue. This won't
// happen to GCC or clang. In this case, bail out directly.
return false;
}
// Inspect the instruction to check if we need a new row for it.
cfa_reg = row->GetCFAValue().GetRegisterNumber();
if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
unwind_plan.GetRegisterKind(),
row->GetCFAValue().GetRegisterNumber());
}
if (cfa_reg == m_lldb_sp_regnum) {
// CFA register is sp.
// call next instruction
// call 0
// => pop %ebx
if (call_next_insn_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push/pop register
int regno;
if (push_reg_p(regno)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (pop_reg_p(regno)) {
// Technically, this might be a nonvolatile register recover in
// epilogue. We should reset RegisterInfo for the register. But in
// practice, previous rule for the register is still valid... So we
// ignore this case.
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (pop_misc_reg_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push imm
if (push_imm_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push extended
if (push_extended_pattern_p() || push_misc_reg_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// add/sub %rsp/%esp
int amount;
if (add_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (sub_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// lea %rsp, [%rsp + $offset]
if (lea_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (ret_pattern_p()) {
reinstate_unwind_state = true;
continue;
}
} else if (cfa_reg == m_lldb_fp_regnum) {
// CFA register is fp.
// The only case we care about is epilogue:
// [0x5d] pop %rbp/%ebp
// => [0xc3] ret
if (pop_rbp_pattern_p() || leave_pattern_p()) {
m_cur_insn++;
if (ret_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().SetIsRegisterPlusOffset(
first_row->GetCFAValue().GetRegisterNumber(), m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
reinstate_unwind_state = true;
continue;
}
}
} else {
// CFA register is not sp or fp.
// This must be hand-written assembly.
// Just trust eh_frame and assume we have finished.
break;
}
}
unwind_plan.SetPlanValidAddressRange(func_range);
if (unwind_plan_updated) {
std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString());
unwind_plan_source += " plus augmentation from assembly parsing";
unwind_plan.SetSourceName(unwind_plan_source.c_str());
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
}
return true;
}
bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction(
uint8_t *data, size_t size, size_t &offset) {
offset = 0;
if (!m_register_map_initialized)
return false;
if (m_disasm_context == nullptr)
return false;
while (offset < size) {
int regno;
int insn_len;
int scratch;
m_cur_insn = data + offset;
if (!instruction_length(m_cur_insn, insn_len, size - offset)
|| insn_len > kMaxInstructionByteSize
|| insn_len == 0) {
// An error parsing the instruction, i.e. probably data/garbage - stop
// scanning
break;
}
if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
sub_rsp_pattern_p(scratch) || push_reg_p(regno) ||
mov_reg_to_local_stack_frame_p(regno, scratch) ||
(lea_rsp_pattern_p(scratch) && offset == 0)) {
offset += insn_len;
continue;
}
//
// Unknown non-prologue instruction - stop scanning
break;
}
return true;
}