I initially assumed only kernels could be roots, but that is wrong. A function with no callers also needs to be a root to ensure it is correctly handled. They're very rare because we usually internalize everything, and internal functions with no callers would be deleted. When they are present, we need to also consider their dependencies and act accordingly. Previously, we could put a function "by default" in P0, but it could call another function with internal linkage defined in another module which was of course incorrect. Fixes SWDEV-467695
787 lines
28 KiB
C++
787 lines
28 KiB
C++
//===- AMDGPUSplitModule.cpp ----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file Implements a module splitting algorithm designed to support the
|
|
/// FullLTO --lto-partitions option for parallel codegen. This is completely
|
|
/// different from the common SplitModule pass, as this system is designed with
|
|
/// AMDGPU in mind.
|
|
///
|
|
/// The basic idea of this module splitting implementation is the same as
|
|
/// SplitModule: load-balance the module's functions across a set of N
|
|
/// partitions to allow parallel codegen. However, it does it very
|
|
/// differently than the target-agnostic variant:
|
|
/// - The module has "split roots", which are kernels in the vast
|
|
// majority of cases.
|
|
/// - Each root has a set of dependencies, and when a root and its
|
|
/// dependencies is considered "big", we try to put it in a partition where
|
|
/// most dependencies are already imported, to avoid duplicating large
|
|
/// amounts of code.
|
|
/// - There's special care for indirect calls in order to ensure
|
|
/// AMDGPUResourceUsageAnalysis can work correctly.
|
|
///
|
|
/// This file also includes a more elaborate logging system to enable
|
|
/// users to easily generate logs that (if desired) do not include any value
|
|
/// names, in order to not leak information about the source file.
|
|
/// Such logs are very helpful to understand and fix potential issues with
|
|
/// module splitting.
|
|
|
|
#include "AMDGPUSplitModule.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/Process.h"
|
|
#include "llvm/Support/SHA256.h"
|
|
#include "llvm/Support/Threading.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "amdgpu-split-module"
|
|
|
|
namespace {
|
|
|
|
static cl::opt<float> LargeFnFactor(
|
|
"amdgpu-module-splitting-large-function-threshold", cl::init(2.0f),
|
|
cl::Hidden,
|
|
cl::desc(
|
|
"consider a function as large and needing special treatment when the "
|
|
"cost of importing it into a partition"
|
|
"exceeds the average cost of a partition by this factor; e;g. 2.0 "
|
|
"means if the function and its dependencies is 2 times bigger than "
|
|
"an average partition; 0 disables large functions handling entirely"));
|
|
|
|
static cl::opt<float> LargeFnOverlapForMerge(
|
|
"amdgpu-module-splitting-large-function-merge-overlap", cl::init(0.8f),
|
|
cl::Hidden,
|
|
cl::desc(
|
|
"defines how much overlap between two large function's dependencies "
|
|
"is needed to put them in the same partition"));
|
|
|
|
static cl::opt<bool> NoExternalizeGlobals(
|
|
"amdgpu-module-splitting-no-externalize-globals", cl::Hidden,
|
|
cl::desc("disables externalization of global variable with local linkage; "
|
|
"may cause globals to be duplicated which increases binary size"));
|
|
|
|
static cl::opt<std::string>
|
|
LogDirOpt("amdgpu-module-splitting-log-dir", cl::Hidden,
|
|
cl::desc("output directory for AMDGPU module splitting logs"));
|
|
|
|
static cl::opt<bool>
|
|
LogPrivate("amdgpu-module-splitting-log-private", cl::Hidden,
|
|
cl::desc("hash value names before printing them in the AMDGPU "
|
|
"module splitting logs"));
|
|
|
|
using CostType = InstructionCost::CostType;
|
|
using PartitionID = unsigned;
|
|
using GetTTIFn = function_ref<const TargetTransformInfo &(Function &)>;
|
|
|
|
static bool isEntryPoint(const Function *F) {
|
|
return AMDGPU::isEntryFunctionCC(F->getCallingConv());
|
|
}
|
|
|
|
static std::string getName(const Value &V) {
|
|
static bool HideNames;
|
|
|
|
static llvm::once_flag HideNameInitFlag;
|
|
llvm::call_once(HideNameInitFlag, [&]() {
|
|
if (LogPrivate.getNumOccurrences())
|
|
HideNames = LogPrivate;
|
|
else {
|
|
const auto EV = sys::Process::GetEnv("AMD_SPLIT_MODULE_LOG_PRIVATE");
|
|
HideNames = (EV.value_or("0") != "0");
|
|
}
|
|
});
|
|
|
|
if (!HideNames)
|
|
return V.getName().str();
|
|
return toHex(SHA256::hash(arrayRefFromStringRef(V.getName())),
|
|
/*LowerCase=*/true);
|
|
}
|
|
|
|
/// Main logging helper.
|
|
///
|
|
/// Logging can be configured by the following environment variable.
|
|
/// AMD_SPLIT_MODULE_LOG_DIR=<filepath>
|
|
/// If set, uses <filepath> as the directory to write logfiles to
|
|
/// each time module splitting is used.
|
|
/// AMD_SPLIT_MODULE_LOG_PRIVATE
|
|
/// If set to anything other than zero, all names are hidden.
|
|
///
|
|
/// Both environment variables have corresponding CL options which
|
|
/// takes priority over them.
|
|
///
|
|
/// Any output printed to the log files is also printed to dbgs() when -debug is
|
|
/// used and LLVM_DEBUG is defined.
|
|
///
|
|
/// This approach has a small disadvantage over LLVM_DEBUG though: logging logic
|
|
/// cannot be removed from the code (by building without debug). This probably
|
|
/// has a small performance cost because if some computation/formatting is
|
|
/// needed for logging purpose, it may be done everytime only to be ignored
|
|
/// by the logger.
|
|
///
|
|
/// As this pass only runs once and is not doing anything computationally
|
|
/// expensive, this is likely a reasonable trade-off.
|
|
///
|
|
/// If some computation should really be avoided when unused, users of the class
|
|
/// can check whether any logging will occur by using the bool operator.
|
|
///
|
|
/// \code
|
|
/// if (SML) {
|
|
/// // Executes only if logging to a file or if -debug is available and
|
|
/// used.
|
|
/// }
|
|
/// \endcode
|
|
class SplitModuleLogger {
|
|
public:
|
|
SplitModuleLogger(const Module &M) {
|
|
std::string LogDir = LogDirOpt;
|
|
if (LogDir.empty())
|
|
LogDir = sys::Process::GetEnv("AMD_SPLIT_MODULE_LOG_DIR").value_or("");
|
|
|
|
// No log dir specified means we don't need to log to a file.
|
|
// We may still log to dbgs(), though.
|
|
if (LogDir.empty())
|
|
return;
|
|
|
|
// If a log directory is specified, create a new file with a unique name in
|
|
// that directory.
|
|
int Fd;
|
|
SmallString<0> PathTemplate;
|
|
SmallString<0> RealPath;
|
|
sys::path::append(PathTemplate, LogDir, "Module-%%-%%-%%-%%-%%-%%-%%.txt");
|
|
if (auto Err =
|
|
sys::fs::createUniqueFile(PathTemplate.str(), Fd, RealPath)) {
|
|
report_fatal_error("Failed to create log file at '" + Twine(LogDir) +
|
|
"': " + Err.message(),
|
|
/*CrashDiag=*/false);
|
|
}
|
|
|
|
FileOS = std::make_unique<raw_fd_ostream>(Fd, /*shouldClose=*/true);
|
|
}
|
|
|
|
bool hasLogFile() const { return FileOS != nullptr; }
|
|
|
|
raw_ostream &logfile() {
|
|
assert(FileOS && "no logfile!");
|
|
return *FileOS;
|
|
}
|
|
|
|
/// \returns true if this SML will log anything either to a file or dbgs().
|
|
/// Can be used to avoid expensive computations that are ignored when logging
|
|
/// is disabled.
|
|
operator bool() const {
|
|
return hasLogFile() || (DebugFlag && isCurrentDebugType(DEBUG_TYPE));
|
|
}
|
|
|
|
private:
|
|
std::unique_ptr<raw_fd_ostream> FileOS;
|
|
};
|
|
|
|
template <typename Ty>
|
|
static SplitModuleLogger &operator<<(SplitModuleLogger &SML, const Ty &Val) {
|
|
static_assert(
|
|
!std::is_same_v<Ty, Value>,
|
|
"do not print values to logs directly, use handleName instead!");
|
|
LLVM_DEBUG(dbgs() << Val);
|
|
if (SML.hasLogFile())
|
|
SML.logfile() << Val;
|
|
return SML;
|
|
}
|
|
|
|
/// Calculate the cost of each function in \p M
|
|
/// \param SML Log Helper
|
|
/// \param GetTTI Abstract getter for TargetTransformInfo.
|
|
/// \param M Module to analyze.
|
|
/// \param CostMap[out] Resulting Function -> Cost map.
|
|
/// \return The module's total cost.
|
|
static CostType
|
|
calculateFunctionCosts(SplitModuleLogger &SML, GetTTIFn GetTTI, Module &M,
|
|
DenseMap<const Function *, CostType> &CostMap) {
|
|
CostType ModuleCost = 0;
|
|
CostType KernelCost = 0;
|
|
|
|
for (auto &Fn : M) {
|
|
if (Fn.isDeclaration())
|
|
continue;
|
|
|
|
CostType FnCost = 0;
|
|
const auto &TTI = GetTTI(Fn);
|
|
for (const auto &BB : Fn) {
|
|
for (const auto &I : BB) {
|
|
auto Cost =
|
|
TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
|
|
assert(Cost != InstructionCost::getMax());
|
|
// Assume expensive if we can't tell the cost of an instruction.
|
|
CostType CostVal =
|
|
Cost.getValue().value_or(TargetTransformInfo::TCC_Expensive);
|
|
assert((FnCost + CostVal) >= FnCost && "Overflow!");
|
|
FnCost += CostVal;
|
|
}
|
|
}
|
|
|
|
assert(FnCost != 0);
|
|
|
|
CostMap[&Fn] = FnCost;
|
|
assert((ModuleCost + FnCost) >= ModuleCost && "Overflow!");
|
|
ModuleCost += FnCost;
|
|
|
|
if (isEntryPoint(&Fn))
|
|
KernelCost += FnCost;
|
|
}
|
|
|
|
CostType FnCost = (ModuleCost - KernelCost);
|
|
SML << "=> Total Module Cost: " << ModuleCost << '\n'
|
|
<< " => KernelCost: " << KernelCost << " ("
|
|
<< format("%0.2f", (float(KernelCost) / ModuleCost) * 100) << "%)\n"
|
|
<< " => FnsCost: " << FnCost << " ("
|
|
<< format("%0.2f", (float(FnCost) / ModuleCost) * 100) << "%)\n";
|
|
|
|
return ModuleCost;
|
|
}
|
|
|
|
static bool canBeIndirectlyCalled(const Function &F) {
|
|
if (F.isDeclaration() || isEntryPoint(&F))
|
|
return false;
|
|
return !F.hasLocalLinkage() ||
|
|
F.hasAddressTaken(/*PutOffender=*/nullptr,
|
|
/*IgnoreCallbackUses=*/false,
|
|
/*IgnoreAssumeLikeCalls=*/true,
|
|
/*IgnoreLLVMUsed=*/true,
|
|
/*IgnoreARCAttachedCall=*/false,
|
|
/*IgnoreCastedDirectCall=*/true);
|
|
}
|
|
|
|
/// When a function or any of its callees performs an indirect call, this
|
|
/// takes over \ref addAllDependencies and adds all potentially callable
|
|
/// functions to \p Fns so they can be counted as dependencies of the function.
|
|
///
|
|
/// This is needed due to how AMDGPUResourceUsageAnalysis operates: in the
|
|
/// presence of an indirect call, the function's resource usage is the same as
|
|
/// the most expensive function in the module.
|
|
/// \param M The module.
|
|
/// \param Fns[out] Resulting list of functions.
|
|
static void addAllIndirectCallDependencies(const Module &M,
|
|
DenseSet<const Function *> &Fns) {
|
|
for (const auto &Fn : M) {
|
|
if (canBeIndirectlyCalled(Fn))
|
|
Fns.insert(&Fn);
|
|
}
|
|
}
|
|
|
|
/// Adds the functions that \p Fn may call to \p Fns, then recurses into each
|
|
/// callee until all reachable functions have been gathered.
|
|
///
|
|
/// \param SML Log Helper
|
|
/// \param CG Call graph for \p Fn's module.
|
|
/// \param Fn Current function to look at.
|
|
/// \param Fns[out] Resulting list of functions.
|
|
/// \param OnlyDirect Whether to only consider direct callees.
|
|
/// \param HadIndirectCall[out] Set to true if an indirect call was seen at some
|
|
/// point, either in \p Fn or in one of the function it calls. When that
|
|
/// happens, we fall back to adding all callable functions inside \p Fn's module
|
|
/// to \p Fns.
|
|
static void addAllDependencies(SplitModuleLogger &SML, const CallGraph &CG,
|
|
const Function &Fn,
|
|
DenseSet<const Function *> &Fns, bool OnlyDirect,
|
|
bool &HadIndirectCall) {
|
|
assert(!Fn.isDeclaration());
|
|
|
|
const Module &M = *Fn.getParent();
|
|
SmallVector<const Function *> WorkList({&Fn});
|
|
while (!WorkList.empty()) {
|
|
const auto &CurFn = *WorkList.pop_back_val();
|
|
assert(!CurFn.isDeclaration());
|
|
|
|
// Scan for an indirect call. If such a call is found, we have to
|
|
// conservatively assume this can call all non-entrypoint functions in the
|
|
// module.
|
|
|
|
for (auto &CGEntry : *CG[&CurFn]) {
|
|
auto *CGNode = CGEntry.second;
|
|
auto *Callee = CGNode->getFunction();
|
|
if (!Callee) {
|
|
if (OnlyDirect)
|
|
continue;
|
|
|
|
// Functions have an edge towards CallsExternalNode if they're external
|
|
// declarations, or if they do an indirect call. As we only process
|
|
// definitions here, we know this means the function has an indirect
|
|
// call. We then have to conservatively assume this can call all
|
|
// non-entrypoint functions in the module.
|
|
if (CGNode != CG.getCallsExternalNode())
|
|
continue; // this is another function-less node we don't care about.
|
|
|
|
SML << "Indirect call detected in " << getName(CurFn)
|
|
<< " - treating all non-entrypoint functions as "
|
|
"potential dependencies\n";
|
|
|
|
// TODO: Print an ORE as well ?
|
|
addAllIndirectCallDependencies(M, Fns);
|
|
HadIndirectCall = true;
|
|
continue;
|
|
}
|
|
|
|
if (Callee->isDeclaration())
|
|
continue;
|
|
|
|
auto [It, Inserted] = Fns.insert(Callee);
|
|
if (Inserted)
|
|
WorkList.push_back(Callee);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Contains information about a function and its dependencies.
|
|
/// This is a splitting root. The splitting algorithm works by
|
|
/// assigning these to partitions.
|
|
struct FunctionWithDependencies {
|
|
FunctionWithDependencies(SplitModuleLogger &SML, CallGraph &CG,
|
|
const DenseMap<const Function *, CostType> &FnCosts,
|
|
const Function *Fn)
|
|
: Fn(Fn) {
|
|
// When Fn is not a kernel, we don't need to collect indirect callees.
|
|
// Resource usage analysis is only performed on kernels, and we collect
|
|
// indirect callees for resource usage analysis.
|
|
addAllDependencies(SML, CG, *Fn, Dependencies,
|
|
/*OnlyDirect*/ !isEntryPoint(Fn), HasIndirectCall);
|
|
TotalCost = FnCosts.at(Fn);
|
|
for (const auto *Dep : Dependencies) {
|
|
TotalCost += FnCosts.at(Dep);
|
|
|
|
// We cannot duplicate functions with external linkage, or functions that
|
|
// may be overriden at runtime.
|
|
HasNonDuplicatableDependecy |=
|
|
(Dep->hasExternalLinkage() || !Dep->isDefinitionExact());
|
|
}
|
|
}
|
|
|
|
const Function *Fn = nullptr;
|
|
DenseSet<const Function *> Dependencies;
|
|
/// Whether \p Fn or any of its \ref Dependencies contains an indirect call.
|
|
bool HasIndirectCall = false;
|
|
/// Whether any of \p Fn's dependencies cannot be duplicated.
|
|
bool HasNonDuplicatableDependecy = false;
|
|
|
|
CostType TotalCost = 0;
|
|
|
|
/// \returns true if this function and its dependencies can be considered
|
|
/// large according to \p Threshold.
|
|
bool isLarge(CostType Threshold) const {
|
|
return TotalCost > Threshold && !Dependencies.empty();
|
|
}
|
|
};
|
|
|
|
/// Calculates how much overlap there is between \p A and \p B.
|
|
/// \return A number between 0.0 and 1.0, where 1.0 means A == B and 0.0 means A
|
|
/// and B have no shared elements. Kernels do not count in overlap calculation.
|
|
static float calculateOverlap(const DenseSet<const Function *> &A,
|
|
const DenseSet<const Function *> &B) {
|
|
DenseSet<const Function *> Total;
|
|
for (const auto *F : A) {
|
|
if (!isEntryPoint(F))
|
|
Total.insert(F);
|
|
}
|
|
|
|
if (Total.empty())
|
|
return 0.0f;
|
|
|
|
unsigned NumCommon = 0;
|
|
for (const auto *F : B) {
|
|
if (isEntryPoint(F))
|
|
continue;
|
|
|
|
auto [It, Inserted] = Total.insert(F);
|
|
if (!Inserted)
|
|
++NumCommon;
|
|
}
|
|
|
|
return static_cast<float>(NumCommon) / Total.size();
|
|
}
|
|
|
|
/// Performs all of the partitioning work on \p M.
|
|
/// \param SML Log Helper
|
|
/// \param M Module to partition.
|
|
/// \param NumParts Number of partitions to create.
|
|
/// \param ModuleCost Total cost of all functions in \p M.
|
|
/// \param FnCosts Map of Function -> Cost
|
|
/// \param WorkList Functions and their dependencies to process in order.
|
|
/// \returns The created partitions (a vector of size \p NumParts )
|
|
static std::vector<DenseSet<const Function *>>
|
|
doPartitioning(SplitModuleLogger &SML, Module &M, unsigned NumParts,
|
|
CostType ModuleCost,
|
|
const DenseMap<const Function *, CostType> &FnCosts,
|
|
const SmallVector<FunctionWithDependencies> &WorkList) {
|
|
|
|
SML << "\n--Partitioning Starts--\n";
|
|
|
|
// Calculate a "large function threshold". When more than one function's total
|
|
// import cost exceeds this value, we will try to assign it to an existing
|
|
// partition to reduce the amount of duplication needed.
|
|
//
|
|
// e.g. let two functions X and Y have a import cost of ~10% of the module, we
|
|
// assign X to a partition as usual, but when we get to Y, we check if it's
|
|
// worth also putting it in Y's partition.
|
|
const CostType LargeFnThreshold =
|
|
LargeFnFactor ? CostType(((ModuleCost / NumParts) * LargeFnFactor))
|
|
: std::numeric_limits<CostType>::max();
|
|
|
|
std::vector<DenseSet<const Function *>> Partitions;
|
|
Partitions.resize(NumParts);
|
|
|
|
// Assign functions to partitions, and try to keep the partitions more or
|
|
// less balanced. We do that through a priority queue sorted in reverse, so we
|
|
// can always look at the partition with the least content.
|
|
//
|
|
// There are some cases where we will be deliberately unbalanced though.
|
|
// - Large functions: we try to merge with existing partitions to reduce code
|
|
// duplication.
|
|
// - Functions with indirect or external calls always go in the first
|
|
// partition (P0).
|
|
auto ComparePartitions = [](const std::pair<PartitionID, CostType> &a,
|
|
const std::pair<PartitionID, CostType> &b) {
|
|
// When two partitions have the same cost, assign to the one with the
|
|
// biggest ID first. This allows us to put things in P0 last, because P0 may
|
|
// have other stuff added later.
|
|
if (a.second == b.second)
|
|
return a.first < b.first;
|
|
return a.second > b.second;
|
|
};
|
|
|
|
// We can't use priority_queue here because we need to be able to access any
|
|
// element. This makes this a bit inefficient as we need to sort it again
|
|
// everytime we change it, but it's a very small array anyway (likely under 64
|
|
// partitions) so it's a cheap operation.
|
|
std::vector<std::pair<PartitionID, CostType>> BalancingQueue;
|
|
for (unsigned I = 0; I < NumParts; ++I)
|
|
BalancingQueue.push_back(std::make_pair(I, 0));
|
|
|
|
// Helper function to handle assigning a function to a partition. This takes
|
|
// care of updating the balancing queue.
|
|
const auto AssignToPartition = [&](PartitionID PID,
|
|
const FunctionWithDependencies &FWD) {
|
|
auto &FnsInPart = Partitions[PID];
|
|
FnsInPart.insert(FWD.Fn);
|
|
FnsInPart.insert(FWD.Dependencies.begin(), FWD.Dependencies.end());
|
|
|
|
SML << "assign " << getName(*FWD.Fn) << " to P" << PID << "\n -> ";
|
|
if (!FWD.Dependencies.empty()) {
|
|
SML << FWD.Dependencies.size() << " dependencies added\n";
|
|
};
|
|
|
|
// Update the balancing queue. we scan backwards because in the common case
|
|
// the partition is at the end.
|
|
for (auto &[QueuePID, Cost] : reverse(BalancingQueue)) {
|
|
if (QueuePID == PID) {
|
|
CostType NewCost = 0;
|
|
for (auto *Fn : Partitions[PID])
|
|
NewCost += FnCosts.at(Fn);
|
|
|
|
SML << "[Updating P" << PID << " Cost]:" << Cost << " -> " << NewCost;
|
|
if (Cost) {
|
|
SML << " (" << unsigned(((float(NewCost) / Cost) - 1) * 100)
|
|
<< "% increase)";
|
|
}
|
|
SML << '\n';
|
|
|
|
Cost = NewCost;
|
|
}
|
|
}
|
|
|
|
sort(BalancingQueue, ComparePartitions);
|
|
};
|
|
|
|
for (auto &CurFn : WorkList) {
|
|
// When a function has indirect calls, it must stay in the first partition
|
|
// alongside every reachable non-entry function. This is a nightmare case
|
|
// for splitting as it severely limits what we can do.
|
|
if (CurFn.HasIndirectCall) {
|
|
SML << "Function with indirect call(s): " << getName(*CurFn.Fn)
|
|
<< " defaulting to P0\n";
|
|
AssignToPartition(0, CurFn);
|
|
continue;
|
|
}
|
|
|
|
// When a function has non duplicatable dependencies, we have to keep it in
|
|
// the first partition as well. This is a conservative approach, a
|
|
// finer-grained approach could keep track of which dependencies are
|
|
// non-duplicatable exactly and just make sure they're grouped together.
|
|
if (CurFn.HasNonDuplicatableDependecy) {
|
|
SML << "Function with externally visible dependency "
|
|
<< getName(*CurFn.Fn) << " defaulting to P0\n";
|
|
AssignToPartition(0, CurFn);
|
|
continue;
|
|
}
|
|
|
|
// Be smart with large functions to avoid duplicating their dependencies.
|
|
if (CurFn.isLarge(LargeFnThreshold)) {
|
|
assert(LargeFnOverlapForMerge >= 0.0f && LargeFnOverlapForMerge <= 1.0f);
|
|
SML << "Large Function: " << getName(*CurFn.Fn)
|
|
<< " - looking for partition with at least "
|
|
<< format("%0.2f", LargeFnOverlapForMerge * 100) << "% overlap\n";
|
|
|
|
bool Assigned = false;
|
|
for (const auto &[PID, Fns] : enumerate(Partitions)) {
|
|
float Overlap = calculateOverlap(CurFn.Dependencies, Fns);
|
|
SML << " => " << format("%0.2f", Overlap * 100) << "% overlap with P"
|
|
<< PID << '\n';
|
|
if (Overlap > LargeFnOverlapForMerge) {
|
|
SML << " selecting P" << PID << '\n';
|
|
AssignToPartition(PID, CurFn);
|
|
Assigned = true;
|
|
}
|
|
}
|
|
|
|
if (Assigned)
|
|
continue;
|
|
}
|
|
|
|
// Normal "load-balancing", assign to partition with least pressure.
|
|
auto [PID, CurCost] = BalancingQueue.back();
|
|
AssignToPartition(PID, CurFn);
|
|
}
|
|
|
|
if (SML) {
|
|
for (const auto &[Idx, Part] : enumerate(Partitions)) {
|
|
CostType Cost = 0;
|
|
for (auto *Fn : Part)
|
|
Cost += FnCosts.at(Fn);
|
|
SML << "P" << Idx << " has a total cost of " << Cost << " ("
|
|
<< format("%0.2f", (float(Cost) / ModuleCost) * 100)
|
|
<< "% of source module)\n";
|
|
}
|
|
|
|
SML << "--Partitioning Done--\n\n";
|
|
}
|
|
|
|
// Check no functions were missed.
|
|
#ifndef NDEBUG
|
|
DenseSet<const Function *> AllFunctions;
|
|
for (const auto &Part : Partitions)
|
|
AllFunctions.insert(Part.begin(), Part.end());
|
|
|
|
for (auto &Fn : M) {
|
|
if (!Fn.isDeclaration() && !AllFunctions.contains(&Fn)) {
|
|
assert(AllFunctions.contains(&Fn) && "Missed a function?!");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return Partitions;
|
|
}
|
|
|
|
static void externalize(GlobalValue &GV) {
|
|
if (GV.hasLocalLinkage()) {
|
|
GV.setLinkage(GlobalValue::ExternalLinkage);
|
|
GV.setVisibility(GlobalValue::HiddenVisibility);
|
|
}
|
|
|
|
// Unnamed entities must be named consistently between modules. setName will
|
|
// give a distinct name to each such entity.
|
|
if (!GV.hasName())
|
|
GV.setName("__llvmsplit_unnamed");
|
|
}
|
|
|
|
static bool hasDirectCaller(const Function &Fn) {
|
|
for (auto &U : Fn.uses()) {
|
|
if (auto *CB = dyn_cast<CallBase>(U.getUser()); CB && CB->isCallee(&U))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void splitAMDGPUModule(
|
|
GetTTIFn GetTTI, Module &M, unsigned N,
|
|
function_ref<void(std::unique_ptr<Module> MPart)> ModuleCallback) {
|
|
|
|
SplitModuleLogger SML(M);
|
|
|
|
CallGraph CG(M);
|
|
|
|
// Externalize functions whose address are taken.
|
|
//
|
|
// This is needed because partitioning is purely based on calls, but sometimes
|
|
// a kernel/function may just look at the address of another local function
|
|
// and not do anything (no calls). After partitioning, that local function may
|
|
// end up in a different module (so it's just a declaration in the module
|
|
// where its address is taken), which emits a "undefined hidden symbol" linker
|
|
// error.
|
|
//
|
|
// Additionally, it guides partitioning to not duplicate this function if it's
|
|
// called directly at some point.
|
|
for (auto &Fn : M) {
|
|
if (Fn.hasAddressTaken()) {
|
|
if (Fn.hasLocalLinkage()) {
|
|
SML << "[externalize] " << Fn.getName()
|
|
<< " because its address is taken\n";
|
|
}
|
|
externalize(Fn);
|
|
}
|
|
}
|
|
|
|
// Externalize local GVs, which avoids duplicating their initializers, which
|
|
// in turns helps keep code size in check.
|
|
if (!NoExternalizeGlobals) {
|
|
for (auto &GV : M.globals()) {
|
|
if (GV.hasLocalLinkage())
|
|
SML << "[externalize] GV " << GV.getName() << '\n';
|
|
externalize(GV);
|
|
}
|
|
}
|
|
|
|
// Start by calculating the cost of every function in the module, as well as
|
|
// the module's overall cost.
|
|
DenseMap<const Function *, CostType> FnCosts;
|
|
const CostType ModuleCost = calculateFunctionCosts(SML, GetTTI, M, FnCosts);
|
|
|
|
// First, gather ever kernel into the worklist.
|
|
SmallVector<FunctionWithDependencies> WorkList;
|
|
for (auto &Fn : M) {
|
|
if (isEntryPoint(&Fn) && !Fn.isDeclaration())
|
|
WorkList.emplace_back(SML, CG, FnCosts, &Fn);
|
|
}
|
|
|
|
// Then, find missing functions that need to be considered as additional
|
|
// roots. These can't be called in theory, but in practice we still have to
|
|
// handle them to avoid linker errors.
|
|
{
|
|
DenseSet<const Function *> SeenFunctions;
|
|
for (const auto &FWD : WorkList) {
|
|
SeenFunctions.insert(FWD.Fn);
|
|
SeenFunctions.insert(FWD.Dependencies.begin(), FWD.Dependencies.end());
|
|
}
|
|
|
|
for (auto &Fn : M) {
|
|
// If this function is not part of any kernel's dependencies and isn't
|
|
// directly called, consider it as a root.
|
|
if (!Fn.isDeclaration() && !isEntryPoint(&Fn) &&
|
|
!SeenFunctions.count(&Fn) && !hasDirectCaller(Fn)) {
|
|
WorkList.emplace_back(SML, CG, FnCosts, &Fn);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort the worklist so the most expensive roots are seen first.
|
|
sort(WorkList, [&](auto &A, auto &B) {
|
|
// Sort by total cost, and if the total cost is identical, sort
|
|
// alphabetically.
|
|
if (A.TotalCost == B.TotalCost)
|
|
return A.Fn->getName() < B.Fn->getName();
|
|
return A.TotalCost > B.TotalCost;
|
|
});
|
|
|
|
if (SML) {
|
|
SML << "Worklist\n";
|
|
for (const auto &FWD : WorkList) {
|
|
SML << "[root] " << getName(*FWD.Fn) << " (totalCost:" << FWD.TotalCost
|
|
<< " indirect:" << FWD.HasIndirectCall
|
|
<< " hasNonDuplicatableDep:" << FWD.HasNonDuplicatableDependecy
|
|
<< ")\n";
|
|
// Sort function names before printing to ensure determinism.
|
|
SmallVector<std::string> SortedDepNames;
|
|
SortedDepNames.reserve(FWD.Dependencies.size());
|
|
for (const auto *Dep : FWD.Dependencies)
|
|
SortedDepNames.push_back(getName(*Dep));
|
|
sort(SortedDepNames);
|
|
|
|
for (const auto &Name : SortedDepNames)
|
|
SML << " [dependency] " << Name << '\n';
|
|
}
|
|
}
|
|
|
|
// This performs all of the partitioning work.
|
|
auto Partitions = doPartitioning(SML, M, N, ModuleCost, FnCosts, WorkList);
|
|
assert(Partitions.size() == N);
|
|
|
|
// If we didn't externalize GVs, then local GVs need to be conservatively
|
|
// imported into every module (including their initializers), and then cleaned
|
|
// up afterwards.
|
|
const auto NeedsConservativeImport = [&](const GlobalValue *GV) {
|
|
// We conservatively import private/internal GVs into every module and clean
|
|
// them up afterwards.
|
|
const auto *Var = dyn_cast<GlobalVariable>(GV);
|
|
return Var && Var->hasLocalLinkage();
|
|
};
|
|
|
|
SML << "Creating " << N << " modules...\n";
|
|
unsigned TotalFnImpls = 0;
|
|
for (unsigned I = 0; I < N; ++I) {
|
|
const auto &FnsInPart = Partitions[I];
|
|
|
|
ValueToValueMapTy VMap;
|
|
std::unique_ptr<Module> MPart(
|
|
CloneModule(M, VMap, [&](const GlobalValue *GV) {
|
|
// Functions go in their assigned partition.
|
|
if (const auto *Fn = dyn_cast<Function>(GV))
|
|
return FnsInPart.contains(Fn);
|
|
|
|
if (NeedsConservativeImport(GV))
|
|
return true;
|
|
|
|
// Everything else goes in the first partition.
|
|
return I == 0;
|
|
}));
|
|
|
|
// Clean-up conservatively imported GVs without any users.
|
|
for (auto &GV : make_early_inc_range(MPart->globals())) {
|
|
if (NeedsConservativeImport(&GV) && GV.use_empty())
|
|
GV.eraseFromParent();
|
|
}
|
|
|
|
unsigned NumAllFns = 0, NumKernels = 0;
|
|
for (auto &Cur : *MPart) {
|
|
if (!Cur.isDeclaration()) {
|
|
++NumAllFns;
|
|
if (isEntryPoint(&Cur))
|
|
++NumKernels;
|
|
}
|
|
}
|
|
TotalFnImpls += NumAllFns;
|
|
SML << " - Module " << I << " with " << NumAllFns << " functions ("
|
|
<< NumKernels << " kernels)\n";
|
|
ModuleCallback(std::move(MPart));
|
|
}
|
|
|
|
SML << TotalFnImpls << " function definitions across all modules ("
|
|
<< format("%0.2f", (float(TotalFnImpls) / FnCosts.size()) * 100)
|
|
<< "% of original module)\n";
|
|
}
|
|
} // namespace
|
|
|
|
PreservedAnalyses AMDGPUSplitModulePass::run(Module &M,
|
|
ModuleAnalysisManager &MAM) {
|
|
FunctionAnalysisManager &FAM =
|
|
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
const auto TTIGetter = [&FAM](Function &F) -> const TargetTransformInfo & {
|
|
return FAM.getResult<TargetIRAnalysis>(F);
|
|
};
|
|
splitAMDGPUModule(TTIGetter, M, N, ModuleCallback);
|
|
// We don't change the original module.
|
|
return PreservedAnalyses::all();
|
|
}
|