Files
clang-p2996/llvm/lib/Target/ARM/MVETailPredication.cpp
Florian Hahn bcbd26bfe6 [SCEV] Move ScalarEvolutionExpander.cpp to Transforms/Utils (NFC).
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.

This patch was originally committed as b8a3c34eee, but broke the
modules build, as LoopAccessAnalysis was using the Expander.

The code-gen part of LAA was moved to lib/Transforms recently, so this
patch can be landed again.

Reviewers: sanjoy.google, efriedma, reames

Reviewed By: sanjoy.google

Differential Revision: https://reviews.llvm.org/D71537
2020-05-20 10:53:40 +01:00

716 lines
25 KiB
C++

//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
/// branches to help accelerate DSP applications. These two extensions,
/// combined with a new form of predication called tail-predication, can be used
/// to provide implicit vector predication within a low-overhead loop.
/// This is implicit because the predicate of active/inactive lanes is
/// calculated by hardware, and thus does not need to be explicitly passed
/// to vector instructions. The instructions responsible for this are the
/// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
/// the total number of data elements processed by the loop. The loop-end
/// LETP instruction is responsible for decrementing and setting the remaining
/// elements to be processed and generating the mask of active lanes.
///
/// The HardwareLoops pass inserts intrinsics identifying loops that the
/// backend will attempt to convert into a low-overhead loop. The vectorizer is
/// responsible for generating a vectorized loop in which the lanes are
/// predicated upon the iteration counter. This pass looks at these predicated
/// vector loops, that are targets for low-overhead loops, and prepares it for
/// code generation. Once the vectorizer has produced a masked loop, there's a
/// couple of final forms:
/// - A tail-predicated loop, with implicit predication.
/// - A loop containing multiple VCPT instructions, predicating multiple VPT
/// blocks of instructions operating on different vector types.
///
/// This pass:
/// 1) Pattern matches the scalar iteration count produced by the vectoriser.
/// The scalar loop iteration count represents the number of elements to be
/// processed.
/// TODO: this could be emitted using an intrinsic, similar to the hardware
/// loop intrinsics, so that we don't need to pattern match this here.
/// 2) Inserts the VCTP intrinsic to represent the effect of
/// tail predication. This will be picked up by the ARM Low-overhead loop
/// pass, which performs the final transformation to a DLSTP or WLSTP
/// tail-predicated loop.
#include "ARM.h"
#include "ARMSubtarget.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
using namespace llvm;
#define DEBUG_TYPE "mve-tail-predication"
#define DESC "Transform predicated vector loops to use MVE tail predication"
cl::opt<bool>
DisableTailPredication("disable-mve-tail-predication", cl::Hidden,
cl::init(true),
cl::desc("Disable MVE Tail Predication"));
namespace {
// Bookkeeping for pattern matching the loop trip count and the number of
// elements processed by the loop.
struct TripCountPattern {
// An icmp instruction that calculates a predicate of active/inactive lanes
// used by the masked loads/stores.
Instruction *Predicate = nullptr;
// The add instruction that increments the IV.
Value *TripCount = nullptr;
// The number of elements processed by the vector loop.
Value *NumElements = nullptr;
// Other instructions in the icmp chain that calculate the predicate.
FixedVectorType *VecTy = nullptr;
Instruction *Shuffle = nullptr;
Instruction *Induction = nullptr;
TripCountPattern(Instruction *P, Value *TC, FixedVectorType *VT)
: Predicate(P), TripCount(TC), VecTy(VT){};
};
class MVETailPredication : public LoopPass {
SmallVector<IntrinsicInst*, 4> MaskedInsts;
Loop *L = nullptr;
LoopInfo *LI = nullptr;
const DataLayout *DL;
DominatorTree *DT = nullptr;
ScalarEvolution *SE = nullptr;
TargetTransformInfo *TTI = nullptr;
TargetLibraryInfo *TLI = nullptr;
bool ClonedVCTPInExitBlock = false;
public:
static char ID;
MVETailPredication() : LoopPass(ID) { }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.setPreservesCFG();
}
bool runOnLoop(Loop *L, LPPassManager&) override;
private:
/// Perform the relevant checks on the loop and convert if possible.
bool TryConvert(Value *TripCount);
/// Return whether this is a vectorized loop, that contains masked
/// load/stores.
bool IsPredicatedVectorLoop();
/// Compute a value for the total number of elements that the predicated
/// loop will process if it is a runtime value.
bool ComputeRuntimeElements(TripCountPattern &TCP);
/// Return whether this is the icmp that generates an i1 vector, based
/// upon a loop counter and a limit that is defined outside the loop,
/// that generates the active/inactive lanes required for tail-predication.
bool isTailPredicate(TripCountPattern &TCP);
/// Insert the intrinsic to represent the effect of tail predication.
void InsertVCTPIntrinsic(TripCountPattern &TCP,
DenseMap<Instruction *, Instruction *> &NewPredicates);
/// Rematerialize the iteration count in exit blocks, which enables
/// ARMLowOverheadLoops to better optimise away loop update statements inside
/// hardware-loops.
void RematerializeIterCount();
};
} // end namespace
static bool IsDecrement(Instruction &I) {
auto *Call = dyn_cast<IntrinsicInst>(&I);
if (!Call)
return false;
Intrinsic::ID ID = Call->getIntrinsicID();
return ID == Intrinsic::loop_decrement_reg;
}
static bool IsMasked(Instruction *I) {
auto *Call = dyn_cast<IntrinsicInst>(I);
if (!Call)
return false;
Intrinsic::ID ID = Call->getIntrinsicID();
// TODO: Support gather/scatter expand/compress operations.
return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load;
}
void MVETailPredication::RematerializeIterCount() {
SmallVector<WeakTrackingVH, 16> DeadInsts;
SCEVExpander Rewriter(*SE, *DL, "mvetp");
ReplaceExitVal ReplaceExitValue = AlwaysRepl;
formLCSSARecursively(*L, *DT, LI, SE);
rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, ReplaceExitValue,
DeadInsts);
}
bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
if (skipLoop(L) || DisableTailPredication)
return false;
MaskedInsts.clear();
Function &F = *L->getHeader()->getParent();
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<TargetMachine>();
auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
DL = &L->getHeader()->getModule()->getDataLayout();
this->L = L;
// The MVE and LOB extensions are combined to enable tail-predication, but
// there's nothing preventing us from generating VCTP instructions for v8.1m.
if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
return false;
}
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
for (auto &I : *BB) {
auto *Call = dyn_cast<IntrinsicInst>(&I);
if (!Call)
continue;
Intrinsic::ID ID = Call->getIntrinsicID();
if (ID == Intrinsic::set_loop_iterations ||
ID == Intrinsic::test_set_loop_iterations)
return cast<IntrinsicInst>(&I);
}
return nullptr;
};
// Look for the hardware loop intrinsic that sets the iteration count.
IntrinsicInst *Setup = FindLoopIterations(Preheader);
// The test.set iteration could live in the pre-preheader.
if (!Setup) {
if (!Preheader->getSinglePredecessor())
return false;
Setup = FindLoopIterations(Preheader->getSinglePredecessor());
if (!Setup)
return false;
}
// Search for the hardware loop intrinic that decrements the loop counter.
IntrinsicInst *Decrement = nullptr;
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
if (IsDecrement(I)) {
Decrement = cast<IntrinsicInst>(&I);
break;
}
}
}
if (!Decrement)
return false;
ClonedVCTPInExitBlock = false;
LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
<< *Decrement << "\n");
if (TryConvert(Setup->getArgOperand(0))) {
if (ClonedVCTPInExitBlock)
RematerializeIterCount();
return true;
}
LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n");
return false;
}
// Pattern match predicates/masks and determine if they use the loop induction
// variable to control the number of elements processed by the loop. If so,
// the loop is a candidate for tail-predication.
bool MVETailPredication::isTailPredicate(TripCountPattern &TCP) {
using namespace PatternMatch;
// Pattern match the loop body and find the add with takes the index iv
// and adds a constant vector to it:
//
// vector.body:
// ..
// %index = phi i32
// %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
// %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert,
// <4 x i32> undef,
// <4 x i32> zeroinitializer
// %induction = [add|or] <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
// %pred = icmp ule <4 x i32> %induction, %broadcast.splat11
//
// Please note that the 'or' is equivalent to the 'and' here, this relies on
// BroadcastSplat being the IV which we know is a phi with 0 start and Lanes
// increment, which is all being checked below.
Instruction *BroadcastSplat = nullptr;
Constant *Const = nullptr;
if (!match(TCP.Induction,
m_Add(m_Instruction(BroadcastSplat), m_Constant(Const))) &&
!match(TCP.Induction,
m_Or(m_Instruction(BroadcastSplat), m_Constant(Const))))
return false;
// Check that we're adding <0, 1, 2, 3...
if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) {
for (unsigned i = 0; i < CDS->getNumElements(); ++i) {
if (CDS->getElementAsInteger(i) != i)
return false;
}
} else
return false;
Instruction *Insert = nullptr;
// The shuffle which broadcasts the index iv into a vector.
if (!match(BroadcastSplat,
m_ShuffleVector(m_Instruction(Insert), m_Undef(), m_ZeroMask())))
return false;
// The insert element which initialises a vector with the index iv.
Instruction *IV = nullptr;
if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(IV), m_Zero())))
return false;
// The index iv.
auto *Phi = dyn_cast<PHINode>(IV);
if (!Phi)
return false;
// TODO: Don't think we need to check the entry value.
Value *OnEntry = Phi->getIncomingValueForBlock(L->getLoopPreheader());
if (!match(OnEntry, m_Zero()))
return false;
Value *InLoop = Phi->getIncomingValueForBlock(L->getLoopLatch());
unsigned Lanes = cast<FixedVectorType>(Insert->getType())->getNumElements();
Instruction *LHS = nullptr;
if (!match(InLoop, m_Add(m_Instruction(LHS), m_SpecificInt(Lanes))))
return false;
return LHS == Phi;
}
static FixedVectorType *getVectorType(IntrinsicInst *I) {
unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
return cast<FixedVectorType>(PtrTy->getElementType());
}
bool MVETailPredication::IsPredicatedVectorLoop() {
// Check that the loop contains at least one masked load/store intrinsic.
// We only support 'normal' vector instructions - other than masked
// load/stores.
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
if (IsMasked(&I)) {
FixedVectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I));
unsigned Lanes = VecTy->getNumElements();
unsigned ElementWidth = VecTy->getScalarSizeInBits();
// MVE vectors are 128-bit, but don't support 128 x i1.
// TODO: Can we support vectors larger than 128-bits?
unsigned MaxWidth = TTI->getRegisterBitWidth(true);
if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth)
return false;
MaskedInsts.push_back(cast<IntrinsicInst>(&I));
} else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) {
if (Int->getIntrinsicID() == Intrinsic::fma)
continue;
for (auto &U : Int->args()) {
if (isa<VectorType>(U->getType()))
return false;
}
}
}
}
return !MaskedInsts.empty();
}
// Pattern match the predicate, which is an icmp with a constant vector of this
// form:
//
// icmp ult <4 x i32> %induction, <i32 32002, i32 32002, i32 32002, i32 32002>
//
// and return the constant, i.e. 32002 in this example. This is assumed to be
// the scalar loop iteration count: the number of loop elements by the
// the vector loop. Further checks are performed in function isTailPredicate(),
// to verify 'induction' behaves as an induction variable.
//
static bool ComputeConstElements(TripCountPattern &TCP) {
if (!dyn_cast<ConstantInt>(TCP.TripCount))
return false;
ConstantInt *VF = ConstantInt::get(
cast<IntegerType>(TCP.TripCount->getType()), TCP.VecTy->getNumElements());
using namespace PatternMatch;
CmpInst::Predicate CC;
if (!match(TCP.Predicate, m_ICmp(CC, m_Instruction(TCP.Induction),
m_AnyIntegralConstant())) ||
CC != ICmpInst::ICMP_ULT)
return false;
LLVM_DEBUG(dbgs() << "ARM TP: icmp with constants: "; TCP.Predicate->dump(););
Value *ConstVec = TCP.Predicate->getOperand(1);
auto *CDS = dyn_cast<ConstantDataSequential>(ConstVec);
if (!CDS || CDS->getNumElements() != VF->getSExtValue())
return false;
if ((TCP.NumElements = CDS->getSplatValue())) {
assert(dyn_cast<ConstantInt>(TCP.NumElements)->getSExtValue() %
VF->getSExtValue() !=
0 &&
"tail-predication: trip count should not be a multiple of the VF");
LLVM_DEBUG(dbgs() << "ARM TP: Found const elem count: " << *TCP.NumElements
<< "\n");
return true;
}
return false;
}
// Pattern match the loop iteration count setup:
//
// %trip.count.minus.1 = add i32 %N, -1
// %broadcast.splatinsert10 = insertelement <4 x i32> undef,
// i32 %trip.count.minus.1, i32 0
// %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10,
// <4 x i32> undef,
// <4 x i32> zeroinitializer
// ..
// vector.body:
// ..
//
static bool MatchElemCountLoopSetup(Loop *L, Instruction *Shuffle,
Value *NumElements) {
using namespace PatternMatch;
Instruction *Insert = nullptr;
if (!match(Shuffle,
m_ShuffleVector(m_Instruction(Insert), m_Undef(), m_ZeroMask())))
return false;
// Insert the limit into a vector.
Instruction *BECount = nullptr;
if (!match(Insert,
m_InsertElement(m_Undef(), m_Instruction(BECount), m_Zero())))
return false;
// The limit calculation, backedge count.
Value *TripCount = nullptr;
if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes())))
return false;
if (TripCount != NumElements || !L->isLoopInvariant(BECount))
return false;
return true;
}
bool MVETailPredication::ComputeRuntimeElements(TripCountPattern &TCP) {
using namespace PatternMatch;
const SCEV *TripCountSE = SE->getSCEV(TCP.TripCount);
ConstantInt *VF = ConstantInt::get(
cast<IntegerType>(TCP.TripCount->getType()), TCP.VecTy->getNumElements());
if (VF->equalsInt(1))
return false;
CmpInst::Predicate Pred;
if (!match(TCP.Predicate, m_ICmp(Pred, m_Instruction(TCP.Induction),
m_Instruction(TCP.Shuffle))) ||
Pred != ICmpInst::ICMP_ULE)
return false;
LLVM_DEBUG(dbgs() << "Computing number of elements for vector trip count: ";
TCP.TripCount->dump());
// Otherwise, continue and try to pattern match the vector iteration
// count expression
auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr * {
if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
if (Const->getAPInt() != -VF->getValue())
return nullptr;
} else
return nullptr;
return dyn_cast<SCEVMulExpr>(S->getOperand(1));
};
auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr * {
if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
if (Const->getValue() != VF)
return nullptr;
} else
return nullptr;
return dyn_cast<SCEVUDivExpr>(S->getOperand(1));
};
auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV * {
if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) {
if (Const->getValue() != VF)
return nullptr;
} else
return nullptr;
if (auto *RoundUp = dyn_cast<SCEVAddExpr>(S->getLHS())) {
if (auto *Const = dyn_cast<SCEVConstant>(RoundUp->getOperand(0))) {
if (Const->getAPInt() != (VF->getValue() - 1))
return nullptr;
} else
return nullptr;
return RoundUp->getOperand(1);
}
return nullptr;
};
// TODO: Can we use SCEV helpers, such as findArrayDimensions, and friends to
// determine the numbers of elements instead? Looks like this is what is used
// for delinearization, but I'm not sure if it can be applied to the
// vectorized form - at least not without a bit more work than I feel
// comfortable with.
// Search for Elems in the following SCEV:
// (1 + ((-VF + (VF * (((VF - 1) + %Elems) /u VF))<nuw>) /u VF))<nuw><nsw>
const SCEV *Elems = nullptr;
if (auto *TC = dyn_cast<SCEVAddExpr>(TripCountSE))
if (auto *Div = dyn_cast<SCEVUDivExpr>(TC->getOperand(1)))
if (auto *Add = dyn_cast<SCEVAddExpr>(Div->getLHS()))
if (auto *Mul = VisitAdd(Add))
if (auto *Div = VisitMul(Mul))
if (auto *Res = VisitDiv(Div))
Elems = Res;
if (!Elems)
return false;
Instruction *InsertPt = L->getLoopPreheader()->getTerminator();
if (!isSafeToExpandAt(Elems, InsertPt, *SE))
return false;
auto DL = L->getHeader()->getModule()->getDataLayout();
SCEVExpander Expander(*SE, DL, "elements");
TCP.NumElements = Expander.expandCodeFor(Elems, Elems->getType(), InsertPt);
if (!MatchElemCountLoopSetup(L, TCP.Shuffle, TCP.NumElements))
return false;
return true;
}
// Look through the exit block to see whether there's a duplicate predicate
// instruction. This can happen when we need to perform a select on values
// from the last and previous iteration. Instead of doing a straight
// replacement of that predicate with the vctp, clone the vctp and place it
// in the block. This means that the VPR doesn't have to be live into the
// exit block which should make it easier to convert this loop into a proper
// tail predicated loop.
static bool Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates,
SetVector<Instruction*> &MaybeDead, Loop *L) {
BasicBlock *Exit = L->getUniqueExitBlock();
if (!Exit) {
LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n");
return false;
}
bool ClonedVCTPInExitBlock = false;
for (auto &Pair : NewPredicates) {
Instruction *OldPred = Pair.first;
Instruction *NewPred = Pair.second;
for (auto &I : *Exit) {
if (I.isSameOperationAs(OldPred)) {
Instruction *PredClone = NewPred->clone();
PredClone->insertBefore(&I);
I.replaceAllUsesWith(PredClone);
MaybeDead.insert(&I);
ClonedVCTPInExitBlock = true;
LLVM_DEBUG(dbgs() << "ARM TP: replacing: "; I.dump();
dbgs() << "ARM TP: with: "; PredClone->dump());
break;
}
}
}
// Drop references and add operands to check for dead.
SmallPtrSet<Instruction*, 4> Dead;
while (!MaybeDead.empty()) {
auto *I = MaybeDead.front();
MaybeDead.remove(I);
if (I->hasNUsesOrMore(1))
continue;
for (auto &U : I->operands())
if (auto *OpI = dyn_cast<Instruction>(U))
MaybeDead.insert(OpI);
I->dropAllReferences();
Dead.insert(I);
}
for (auto *I : Dead) {
LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump());
I->eraseFromParent();
}
for (auto I : L->blocks())
DeleteDeadPHIs(I);
return ClonedVCTPInExitBlock;
}
void MVETailPredication::InsertVCTPIntrinsic(TripCountPattern &TCP,
DenseMap<Instruction*, Instruction*> &NewPredicates) {
IRBuilder<> Builder(L->getHeader()->getFirstNonPHI());
Module *M = L->getHeader()->getModule();
Type *Ty = IntegerType::get(M->getContext(), 32);
// Insert a phi to count the number of elements processed by the loop.
PHINode *Processed = Builder.CreatePHI(Ty, 2);
Processed->addIncoming(TCP.NumElements, L->getLoopPreheader());
// Insert the intrinsic to represent the effect of tail predication.
Builder.SetInsertPoint(cast<Instruction>(TCP.Predicate));
ConstantInt *Factor =
ConstantInt::get(cast<IntegerType>(Ty), TCP.VecTy->getNumElements());
Intrinsic::ID VCTPID;
switch (TCP.VecTy->getNumElements()) {
default:
llvm_unreachable("unexpected number of lanes");
case 4: VCTPID = Intrinsic::arm_mve_vctp32; break;
case 8: VCTPID = Intrinsic::arm_mve_vctp16; break;
case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
// FIXME: vctp64 currently not supported because the predicate
// vector wants to be <2 x i1>, but v2i1 is not a legal MVE
// type, so problems happen at isel time.
// Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
// purposes, but takes a v4i1 instead of a v2i1.
}
Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
Value *TailPredicate = Builder.CreateCall(VCTP, Processed);
TCP.Predicate->replaceAllUsesWith(TailPredicate);
NewPredicates[TCP.Predicate] = cast<Instruction>(TailPredicate);
// Add the incoming value to the new phi.
// TODO: This add likely already exists in the loop.
Value *Remaining = Builder.CreateSub(Processed, Factor);
Processed->addIncoming(Remaining, L->getLoopLatch());
LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
<< *Processed << "\n"
<< "ARM TP: Inserted VCTP: " << *TailPredicate << "\n");
}
bool MVETailPredication::TryConvert(Value *TripCount) {
if (!IsPredicatedVectorLoop()) {
LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
return false;
}
LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
// Walk through the masked intrinsics and try to find whether the predicate
// operand is generated from an induction variable.
SetVector<Instruction*> Predicates;
DenseMap<Instruction*, Instruction*> NewPredicates;
#ifndef NDEBUG
// For debugging purposes, use this to indicate we have been able to
// pattern match the scalar loop trip count.
bool FoundScalarTC = false;
#endif
for (auto *I : MaskedInsts) {
Intrinsic::ID ID = I->getIntrinsicID();
// First, find the icmp used by this masked load/store.
unsigned PredOp = ID == Intrinsic::masked_load ? 2 : 3;
auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
if (!Predicate || Predicates.count(Predicate))
continue;
// Step 1: using this icmp, now calculate the number of elements
// processed by this loop.
TripCountPattern TCP(Predicate, TripCount, getVectorType(I));
if (!(ComputeConstElements(TCP) || ComputeRuntimeElements(TCP)))
continue;
LLVM_DEBUG(FoundScalarTC = true);
if (!isTailPredicate(TCP)) {
LLVM_DEBUG(dbgs() << "ARM TP: Not an icmp that generates tail predicate: "
<< *Predicate << "\n");
continue;
}
LLVM_DEBUG(dbgs() << "ARM TP: Found icmp generating tail predicate: "
<< *Predicate << "\n");
Predicates.insert(Predicate);
// Step 2: emit the VCTP intrinsic representing the effect of TP.
InsertVCTPIntrinsic(TCP, NewPredicates);
}
if (!NewPredicates.size()) {
LLVM_DEBUG(if (!FoundScalarTC)
dbgs() << "ARM TP: Can't determine loop itertion count\n");
return false;
}
// Now clean up.
ClonedVCTPInExitBlock = Cleanup(NewPredicates, Predicates, L);
return true;
}
Pass *llvm::createMVETailPredicationPass() {
return new MVETailPredication();
}
char MVETailPredication::ID = 0;
INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)