Files
clang-p2996/polly/lib/Transform/DeadCodeElimination.cpp
Tobias Grosser 522478d2c0 clang-tidy: Add llvm namespace comments
llvm commonly adds a comment to the closing brace of a namespace to indicate
which namespace is closed. clang-tidy provides with llvm-namespace-comment
a handy tool to check for this habit. We use it to ensure we consitently use
namespace comments in Polly.

There are slightly different styles in how namespaces are closed in LLVM. As
there is no large difference between the different comment styles we go for the
style clang-tidy suggests by default.

To reproduce this fix run:

for i in `ls tools/polly/lib/*/*.cpp`; \
  clang-tidy -checks='-*,llvm-namespace-comment' -p build $i -fix \
  -header-filter=".*"; \
done

This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.

llvm-svn: 273621
2016-06-23 22:17:27 +00:00

183 lines
6.2 KiB
C++

//===- DeadCodeElimination.cpp - Eliminate dead iteration ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The polyhedral dead code elimination pass analyses a SCoP to eliminate
// statement instances that can be proven dead.
// As a consequence, the code generated for this SCoP may execute a statement
// less often. This means, a statement may be executed only in certain loop
// iterations or it may not even be part of the generated code at all.
//
// This code:
//
// for (i = 0; i < N; i++)
// arr[i] = 0;
// for (i = 0; i < N; i++)
// arr[i] = 10;
// for (i = 0; i < N; i++)
// arr[i] = i;
//
// is e.g. simplified to:
//
// for (i = 0; i < N; i++)
// arr[i] = i;
//
// The idea and the algorithm used was first implemented by Sven Verdoolaege in
// the 'ppcg' tool.
//
//===----------------------------------------------------------------------===//
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopInfo.h"
#include "llvm/Support/CommandLine.h"
#include "isl/flow.h"
#include "isl/map.h"
#include "isl/set.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
using namespace llvm;
using namespace polly;
namespace {
cl::opt<int> DCEPreciseSteps(
"polly-dce-precise-steps",
cl::desc("The number of precise steps between two approximating "
"iterations. (A value of -1 schedules another approximation stage "
"before the actual dead code elimination."),
cl::ZeroOrMore, cl::init(-1));
class DeadCodeElim : public ScopPass {
public:
static char ID;
explicit DeadCodeElim() : ScopPass(ID) {}
/// @brief Remove dead iterations from the schedule of @p S.
bool runOnScop(Scop &S) override;
/// @brief Register all analyses and transformation required.
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
/// @brief Return the set of live iterations.
///
/// The set of live iterations are all iterations that write to memory and for
/// which we can not prove that there will be a later write that _must_
/// overwrite the same memory location and is consequently the only one that
/// is visible after the execution of the SCoP.
///
isl_union_set *getLiveOut(Scop &S);
bool eliminateDeadCode(Scop &S, int PreciseSteps);
};
} // namespace
char DeadCodeElim::ID = 0;
// To compute the live outs, we compute for the data-locations that are
// must-written to the last statement that touches these locations. On top of
// this we add all statements that perform may-write accesses.
//
// We could be more precise by removing may-write accesses for which we know
// that they are overwritten by a must-write after. However, at the moment the
// only may-writes we introduce access the full (unbounded) array, such that
// bounded write accesses can not overwrite all of the data-locations. As
// this means may-writes are in the current situation always live, there is
// no point in trying to remove them from the live-out set.
__isl_give isl_union_set *DeadCodeElim::getLiveOut(Scop &S) {
isl_union_map *Schedule = S.getSchedule();
isl_union_map *WriteIterations = isl_union_map_reverse(S.getMustWrites());
isl_union_map *WriteTimes =
isl_union_map_apply_range(WriteIterations, isl_union_map_copy(Schedule));
isl_union_map *LastWriteTimes = isl_union_map_lexmax(WriteTimes);
isl_union_map *LastWriteIterations = isl_union_map_apply_range(
LastWriteTimes, isl_union_map_reverse(Schedule));
isl_union_set *Live = isl_union_map_range(LastWriteIterations);
Live = isl_union_set_union(Live, isl_union_map_domain(S.getMayWrites()));
return isl_union_set_coalesce(Live);
}
/// Performs polyhedral dead iteration elimination by:
/// o Assuming that the last write to each location is live.
/// o Following each RAW dependency from a live iteration backwards and adding
/// that iteration to the live set.
///
/// To ensure the set of live iterations does not get too complex we always
/// combine a certain number of precise steps with one approximating step that
/// simplifies the life set with an affine hull.
bool DeadCodeElim::eliminateDeadCode(Scop &S, int PreciseSteps) {
DependenceInfo &DI = getAnalysis<DependenceInfo>();
const Dependences &D = DI.getDependences(Dependences::AL_Statement);
if (!D.hasValidDependences())
return false;
isl_union_set *Live = getLiveOut(S);
isl_union_map *Dep =
D.getDependences(Dependences::TYPE_RAW | Dependences::TYPE_RED);
Dep = isl_union_map_reverse(Dep);
if (PreciseSteps == -1)
Live = isl_union_set_affine_hull(Live);
isl_union_set *OriginalDomain = S.getDomains();
int Steps = 0;
while (true) {
isl_union_set *Extra;
Steps++;
Extra =
isl_union_set_apply(isl_union_set_copy(Live), isl_union_map_copy(Dep));
if (isl_union_set_is_subset(Extra, Live)) {
isl_union_set_free(Extra);
break;
}
Live = isl_union_set_union(Live, Extra);
if (Steps > PreciseSteps) {
Steps = 0;
Live = isl_union_set_affine_hull(Live);
}
Live = isl_union_set_intersect(Live, isl_union_set_copy(OriginalDomain));
}
isl_union_map_free(Dep);
isl_union_set_free(OriginalDomain);
bool Changed = S.restrictDomains(isl_union_set_coalesce(Live));
// FIXME: We can probably avoid the recomputation of all dependences by
// updating them explicitly.
if (Changed)
DI.recomputeDependences(Dependences::AL_Statement);
return Changed;
}
bool DeadCodeElim::runOnScop(Scop &S) {
return eliminateDeadCode(S, DCEPreciseSteps);
}
void DeadCodeElim::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DependenceInfo>();
}
Pass *polly::createDeadCodeElimPass() { return new DeadCodeElim(); }
INITIALIZE_PASS_BEGIN(DeadCodeElim, "polly-dce",
"Polly - Remove dead iterations", false, false)
INITIALIZE_PASS_DEPENDENCY(DependenceInfo)
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass)
INITIALIZE_PASS_END(DeadCodeElim, "polly-dce", "Polly - Remove dead iterations",
false, false)