Replace "concept based polymorphism" with simpler PImpl idiom. This pursues two goals: * Enforce static type checking. Previously, target implementations hid base class methods and type checking was impossible. Now that they override the methods, the compiler will complain on mismatched signatures. * Make the code easier to navigate. Previously, if you asked your favorite LSP server to show a method (e.g. `getInstructionCost()`), it would show you methods from `TTI`, `TTI::Concept`, `TTI::Model`, `TTIImplBase`, and target overrides. Now it is two less :) There are three commits to hopefully simplify the review. The first commit removes `TTI::Model`. This is done by deriving `TargetTransformInfoImplBase` from `TTI::Concept`. This is possible because they implement the same set of interfaces with identical signatures. The first commit makes `TargetTransformImplBase` polymorphic, which means all derived classes should `override` its methods. This is done in second commit to make the first one smaller. It appeared infeasible to extract this into a separate PR because the first commit landed separately would result in tons of `-Woverloaded-virtual` warnings (and break `-Werror` builds). The third commit eliminates `TTI::Concept` by merging it with the only derived class `TargetTransformImplBase`. This commit could be extracted into a separate PR, but it touches the same lines in `TargetTransformInfoImpl.h` (removes `override` added by the second commit and adds `virtual`), so I thought it may make sense to land these two commits together. Pull Request: https://github.com/llvm/llvm-project/pull/136674
The LLVM Compiler Infrastructure
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting in touch
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.