Files
clang-p2996/lldb/source/Plugins/Disassembler/llvm/DisassemblerLLVM.cpp
Greg Clayton ba812f4284 <rdar://problem/11330621>
Fixed the DisassemblerLLVMC disassembler to parse more efficiently instead of parsing opcodes over and over. The InstructionLLVMC class now only reads the opcode in the InstructionLLVMC::Decode function. This can be done very efficiently for ARM and architectures that have fixed opcode sizes. For x64 it still calls the disassembler to get the byte size.

Moved the lldb_private::Instruction::Dump(...) function up into the lldb_private::Instruction class and it now uses the function that gets the mnemonic, operandes and comments so that all disassembly is using the same code.

Added StreamString::FillLastLineToColumn() to allow filling a line up to a column with a character (which is used by the lldb_private::Instruction::Dump(...) function).

Modified the Opcode::GetData() fucntion to "do the right thing" for thumb instructions.

llvm-svn: 156532
2012-05-10 02:52:23 +00:00

526 lines
17 KiB
C++

//===-- DisassemblerLLVM.cpp ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DisassemblerLLVM.h"
#include "llvm-c/EnhancedDisassembly.h"
#include "llvm/Support/TargetSelect.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include <assert.h>
using namespace lldb;
using namespace lldb_private;
static int
DataExtractorByteReader (uint8_t *byte, uint64_t address, void *arg)
{
DataExtractor &extractor = *((DataExtractor *)arg);
if (extractor.ValidOffset(address))
{
*byte = *(extractor.GetDataStart() + address);
return 0;
}
else
{
return -1;
}
}
namespace {
struct RegisterReaderArg {
const lldb::addr_t instructionPointer;
const EDDisassemblerRef disassembler;
RegisterReaderArg(lldb::addr_t ip,
EDDisassemblerRef dis) :
instructionPointer(ip),
disassembler(dis)
{
}
};
}
static int IPRegisterReader(uint64_t *value, unsigned regID, void* arg)
{
uint64_t instructionPointer = ((RegisterReaderArg*)arg)->instructionPointer;
EDDisassemblerRef disassembler = ((RegisterReaderArg*)arg)->disassembler;
if (EDRegisterIsProgramCounter(disassembler, regID)) {
*value = instructionPointer;
return 0;
}
return -1;
}
InstructionLLVM::InstructionLLVM (const Address &addr,
AddressClass addr_class,
EDDisassemblerRef disassembler,
llvm::Triple::ArchType arch_type) :
Instruction (addr, addr_class),
m_disassembler (disassembler),
m_inst (NULL),
m_arch_type (arch_type)
{
}
InstructionLLVM::~InstructionLLVM()
{
if (m_inst)
{
EDReleaseInst(m_inst);
m_inst = NULL;
}
}
static void
PadString(Stream *s, const std::string &str, size_t width)
{
int diff = width - str.length();
if (diff > 0)
s->Printf("%s%*.*s", str.c_str(), diff, diff, "");
else
s->Printf("%s ", str.c_str());
}
static void
AddSymbolicInfo (const ExecutionContext *exe_ctx,
StreamString &comment,
uint64_t operand_value,
const Address &inst_addr)
{
Address so_addr;
Target *target = NULL;
if (exe_ctx)
target = exe_ctx->GetTargetPtr();
if (target && !target->GetSectionLoadList().IsEmpty())
{
if (target->GetSectionLoadList().ResolveLoadAddress(operand_value, so_addr))
so_addr.Dump (&comment,
exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL,
Address::DumpStyleResolvedDescriptionNoModule,
Address::DumpStyleSectionNameOffset);
}
else
{
ModuleSP module_sp (inst_addr.GetModule());
if (module_sp)
{
if (module_sp->ResolveFileAddress(operand_value, so_addr))
so_addr.Dump (&comment,
exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL,
Address::DumpStyleResolvedDescriptionNoModule,
Address::DumpStyleSectionNameOffset);
}
}
}
#include "llvm/ADT/StringRef.h"
static inline void StripSpaces(llvm::StringRef &Str)
{
while (!Str.empty() && isspace(Str[0]))
Str = Str.substr(1);
while (!Str.empty() && isspace(Str.back()))
Str = Str.substr(0, Str.size()-1);
}
static inline void RStrip(llvm::StringRef &Str, char c)
{
if (!Str.empty() && Str.back() == c)
Str = Str.substr(0, Str.size()-1);
}
// Aligns the raw disassembly (passed as 'str') with the rest of edis'ed disassembly output.
// This is called from non-raw mode when edis of the current m_inst fails for some reason.
static void
Align(Stream *s, const char *str, size_t opcodeColWidth, size_t operandColWidth)
{
llvm::StringRef raw_disasm(str);
StripSpaces(raw_disasm);
// Split the raw disassembly into opcode and operands.
std::pair<llvm::StringRef, llvm::StringRef> p = raw_disasm.split('\t');
PadString(s, p.first, opcodeColWidth);
if (!p.second.empty())
PadString(s, p.second, operandColWidth);
}
#define AlignPC(pc_val) (pc_val & 0xFFFFFFFC)
void
InstructionLLVM::CalculateMnemonicOperandsAndComment (const ExecutionContext* exe_ctx)
{
const int num_tokens = EDNumTokens(m_inst);
if (num_tokens > 0)
{
const char *token_cstr = NULL;
int currentOpIndex = -1;
StreamString comment;
uint32_t addr_nibble_size = 8;
addr_t base_addr = LLDB_INVALID_ADDRESS;
Target *target = exe_ctx ? exe_ctx->GetTargetPtr() : NULL;
if (target && !target->GetSectionLoadList().IsEmpty())
base_addr = GetAddress().GetLoadAddress (target);
if (base_addr == LLDB_INVALID_ADDRESS)
base_addr = GetAddress().GetFileAddress ();
addr_nibble_size = target->GetArchitecture().GetAddressByteSize() * 2;
lldb::addr_t PC = base_addr + EDInstByteSize(m_inst);
// When executing an ARM instruction, PC reads as the address of the
// current instruction plus 8. And for Thumb, it is plus 4.
if (m_arch_type == llvm::Triple::arm)
PC = base_addr + 8;
else if (m_arch_type == llvm::Triple::thumb)
PC = base_addr + 4;
RegisterReaderArg rra(PC, m_disassembler);
for (int token_idx = 0; token_idx < num_tokens; ++token_idx)
{
EDTokenRef token;
if (EDGetToken(&token, m_inst, token_idx))
break;
if (EDTokenIsOpcode(token) == 1)
{
if (EDGetTokenString(&token_cstr, token) == 0) // 0 on success
{
if (token_cstr)
m_opcode_name.assign(token_cstr);
}
}
else
{
int operandIndex = EDOperandIndexForToken(token);
if (operandIndex >= 0)
{
if (operandIndex != currentOpIndex)
{
currentOpIndex = operandIndex;
EDOperandRef operand;
if (!EDGetOperand(&operand, m_inst, currentOpIndex))
{
if (EDOperandIsMemory(operand))
{
uint64_t operand_value;
if (!EDEvaluateOperand(&operand_value, operand, IPRegisterReader, &rra))
{
comment.Printf("0x%*.*llx ", addr_nibble_size, addr_nibble_size, operand_value);
AddSymbolicInfo (exe_ctx, comment, operand_value, GetAddress());
}
}
}
}
}
if (m_mnemocics.empty() && EDTokenIsWhitespace (token) == 1)
continue;
if (EDGetTokenString (&token_cstr, token))
break;
m_mnemocics.append (token_cstr);
}
}
// FIXME!!!
// Workaround for llvm::tB's operands not properly parsed by ARMAsmParser.
if (m_arch_type == llvm::Triple::thumb && m_opcode_name.compare("b") == 0)
{
const char *inst_str;
const char *pos = NULL;
comment.Clear();
if (EDGetInstString(&inst_str, m_inst) == 0 && (pos = strstr(inst_str, "#")) != NULL)
{
uint64_t operand_value = PC + atoi(++pos);
// Put the address value into the operands.
comment.Printf("0x%*.*llx ", addr_nibble_size, addr_nibble_size, operand_value);
AddSymbolicInfo (exe_ctx, comment, operand_value, GetAddress());
}
}
// Yet more workaround for "bl #..." and "blx #...".
if ((m_arch_type == llvm::Triple::arm || m_arch_type == llvm::Triple::thumb) &&
(m_opcode_name.compare("bl") == 0 || m_opcode_name.compare("blx") == 0))
{
const char *inst_str;
const char *pos = NULL;
comment.Clear();
if (EDGetInstString(&inst_str, m_inst) == 0 && (pos = strstr(inst_str, "#")) != NULL)
{
if (m_arch_type == llvm::Triple::thumb && m_opcode_name.compare("blx") == 0)
{
// A8.6.23 BLX (immediate)
// Target Address = Align(PC,4) + offset value
PC = AlignPC(PC);
}
uint64_t operand_value = PC + atoi(++pos);
// Put the address value into the comment.
comment.Printf("0x%*.*llx ", addr_nibble_size, addr_nibble_size, operand_value);
// And the original token string into the operands.
// llvm::StringRef Str(pos - 1);
// RStrip(Str, '\n');
// operands.PutCString(Str.str().c_str());
AddSymbolicInfo (exe_ctx, comment, operand_value, GetAddress());
}
}
// END of workaround.
m_comment.swap (comment.GetString());
}
}
bool
InstructionLLVM::DoesBranch() const
{
return EDInstIsBranch(m_inst);
}
size_t
InstructionLLVM::Decode (const Disassembler &disassembler,
const lldb_private::DataExtractor &data,
uint32_t data_offset)
{
if (EDCreateInsts(&m_inst, 1, m_disassembler, DataExtractorByteReader, data_offset, (void*)(&data)))
{
const int byte_size = EDInstByteSize(m_inst);
uint32_t offset = data_offset;
// Make a copy of the opcode in m_opcode
switch (disassembler.GetArchitecture().GetMachine())
{
case llvm::Triple::x86:
case llvm::Triple::x86_64:
m_opcode.SetOpcodeBytes (data.PeekData (data_offset, byte_size), byte_size);
break;
case llvm::Triple::arm:
case llvm::Triple::thumb:
switch (byte_size)
{
case 2:
m_opcode.SetOpcode16 (data.GetU16 (&offset));
break;
case 4:
{
if (GetAddressClass() == eAddressClassCodeAlternateISA)
{
// If it is a 32-bit THUMB instruction, we need to swap the upper & lower halves.
uint32_t orig_bytes = data.GetU32 (&offset);
uint16_t upper_bits = (orig_bytes >> 16) & ((1u << 16) - 1);
uint16_t lower_bits = orig_bytes & ((1u << 16) - 1);
uint32_t swapped = (lower_bits << 16) | upper_bits;
m_opcode.SetOpcode32 (swapped);
}
else
m_opcode.SetOpcode32 (data.GetU32 (&offset));
}
break;
default:
assert (!"Invalid ARM opcode size");
break;
}
break;
default:
assert (!"This shouldn't happen since we control the architecture we allow DisassemblerLLVM to be created for");
break;
}
return byte_size;
}
else
return 0;
}
static inline EDAssemblySyntax_t
SyntaxForArchSpec (const ArchSpec &arch)
{
switch (arch.GetMachine ())
{
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return kEDAssemblySyntaxX86ATT;
case llvm::Triple::arm:
case llvm::Triple::thumb:
return kEDAssemblySyntaxARMUAL;
default:
break;
}
return (EDAssemblySyntax_t)0; // default
}
Disassembler *
DisassemblerLLVM::CreateInstance(const ArchSpec &arch)
{
std::auto_ptr<DisassemblerLLVM> disasm_ap (new DisassemblerLLVM(arch));
if (disasm_ap.get() && disasm_ap->IsValid())
return disasm_ap.release();
return NULL;
}
DisassemblerLLVM::DisassemblerLLVM(const ArchSpec &arch) :
Disassembler (arch),
m_disassembler (NULL),
m_disassembler_thumb (NULL) // For ARM only
{
// Initialize the LLVM objects needed to use the disassembler.
static struct InitializeLLVM {
InitializeLLVM() {
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
}
} InitializeLLVM;
const std::string &arch_triple = arch.GetTriple().str();
if (!arch_triple.empty())
{
if (EDGetDisassembler(&m_disassembler, arch_triple.c_str(), SyntaxForArchSpec (arch)))
m_disassembler = NULL;
llvm::Triple::ArchType llvm_arch = arch.GetTriple().getArch();
// Don't have the lldb::Triple::thumb architecture here. If someone specifies
// "thumb" as the architecture, we want a thumb only disassembler. But if any
// architecture starting with "arm" if specified, we want to auto detect the
// arm/thumb code automatically using the AddressClass from section offset
// addresses.
if (llvm_arch == llvm::Triple::arm)
{
ArchSpec thumb_arch(arch);
thumb_arch.GetTriple().setArchName(llvm::StringRef("thumbv7"));
std::string thumb_triple(thumb_arch.GetTriple().getTriple());
if (EDGetDisassembler(&m_disassembler_thumb, thumb_triple.c_str(), kEDAssemblySyntaxARMUAL))
m_disassembler_thumb = NULL;
}
}
}
DisassemblerLLVM::~DisassemblerLLVM()
{
}
size_t
DisassemblerLLVM::DecodeInstructions
(
const Address &base_addr,
const DataExtractor& data,
uint32_t data_offset,
uint32_t num_instructions,
bool append
)
{
if (m_disassembler == NULL)
return 0;
size_t total_inst_byte_size = 0;
if (!append)
m_instruction_list.Clear();
while (data.ValidOffset(data_offset) && num_instructions)
{
Address inst_addr (base_addr);
inst_addr.Slide(data_offset);
bool use_thumb = false;
// If we have a thumb disassembler, then we have an ARM architecture
// so we need to check what the instruction address class is to make
// sure we shouldn't be disassembling as thumb...
AddressClass inst_address_class = eAddressClassInvalid;
if (m_disassembler_thumb)
{
inst_address_class = inst_addr.GetAddressClass ();
if (inst_address_class == eAddressClassCodeAlternateISA)
use_thumb = true;
}
InstructionSP inst_sp (new InstructionLLVM (inst_addr,
inst_address_class,
use_thumb ? m_disassembler_thumb : m_disassembler,
use_thumb ? llvm::Triple::thumb : m_arch.GetMachine()));
size_t inst_byte_size = inst_sp->Decode (*this, data, data_offset);
if (inst_byte_size == 0)
break;
m_instruction_list.Append (inst_sp);
total_inst_byte_size += inst_byte_size;
data_offset += inst_byte_size;
num_instructions--;
}
return total_inst_byte_size;
}
void
DisassemblerLLVM::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance);
}
void
DisassemblerLLVM::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
const char *
DisassemblerLLVM::GetPluginNameStatic()
{
return "llvm-edis";
}
const char *
DisassemblerLLVM::GetPluginDescriptionStatic()
{
return "Disassembler that uses the LLVM enhanced disassembler to disassemble i386, x86_64 and ARM.";
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
const char *
DisassemblerLLVM::GetPluginName()
{
return "DisassemblerLLVM";
}
const char *
DisassemblerLLVM::GetShortPluginName()
{
return GetPluginNameStatic();
}
uint32_t
DisassemblerLLVM::GetPluginVersion()
{
return 1;
}