Files
clang-p2996/llvm/lib/Target/ARM/ARMCodeGenPrepare.cpp
Sam Parker aaec3c6260 [ARM] Allow truncs as sources in ARM CGP
We previously only allowed truncs as sinks, but now allow them as
sources too. We do this by checking that the result type is the
narrow type that we're trying to optimise for.

Differential Revision: https://reviews.llvm.org/D51978

llvm-svn: 342141
2018-09-13 15:14:12 +00:00

770 lines
24 KiB
C++

//===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass inserts intrinsics to handle small types that would otherwise be
/// promoted during legalization. Here we can manually promote types or insert
/// intrinsics which can handle narrow types that aren't supported by the
/// register classes.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#define DEBUG_TYPE "arm-codegenprepare"
using namespace llvm;
static cl::opt<bool>
DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(false),
cl::desc("Disable ARM specific CodeGenPrepare pass"));
static cl::opt<bool>
EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false),
cl::desc("Use DSP instructions for scalar operations"));
static cl::opt<bool>
EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false),
cl::desc("Use DSP instructions for scalar operations\
with immediate operands"));
// The goal of this pass is to enable more efficient code generation for
// operations on narrow types (i.e. types with < 32-bits) and this is a
// motivating IR code example:
//
// define hidden i32 @cmp(i8 zeroext) {
// %2 = add i8 %0, -49
// %3 = icmp ult i8 %2, 3
// ..
// }
//
// The issue here is that i8 is type-legalized to i32 because i8 is not a
// legal type. Thus, arithmetic is done in integer-precision, but then the
// byte value is masked out as follows:
//
// t19: i32 = add t4, Constant:i32<-49>
// t24: i32 = and t19, Constant:i32<255>
//
// Consequently, we generate code like this:
//
// subs r0, #49
// uxtb r1, r0
// cmp r1, #3
//
// This shows that masking out the byte value results in generation of
// the UXTB instruction. This is not optimal as r0 already contains the byte
// value we need, and so instead we can just generate:
//
// sub.w r1, r0, #49
// cmp r1, #3
//
// We achieve this by type promoting the IR to i32 like so for this example:
//
// define i32 @cmp(i8 zeroext %c) {
// %0 = zext i8 %c to i32
// %c.off = add i32 %0, -49
// %1 = icmp ult i32 %c.off, 3
// ..
// }
//
// For this to be valid and legal, we need to prove that the i32 add is
// producing the same value as the i8 addition, and that e.g. no overflow
// happens.
//
// A brief sketch of the algorithm and some terminology.
// We pattern match interesting IR patterns:
// - which have "sources": instructions producing narrow values (i8, i16), and
// - they have "sinks": instructions consuming these narrow values.
//
// We collect all instruction connecting sources and sinks in a worklist, so
// that we can mutate these instruction and perform type promotion when it is
// legal to do so.
namespace {
class IRPromoter {
SmallPtrSet<Value*, 8> NewInsts;
SmallVector<Instruction*, 4> InstsToRemove;
Module *M = nullptr;
LLVMContext &Ctx;
public:
IRPromoter(Module *M) : M(M), Ctx(M->getContext()) { }
void Cleanup() {
for (auto *I : InstsToRemove) {
LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n");
I->dropAllReferences();
I->eraseFromParent();
}
InstsToRemove.clear();
NewInsts.clear();
}
void Mutate(Type *OrigTy,
SmallPtrSetImpl<Value*> &Visited,
SmallPtrSetImpl<Value*> &Sources,
SmallPtrSetImpl<Instruction*> &Sinks);
};
class ARMCodeGenPrepare : public FunctionPass {
const ARMSubtarget *ST = nullptr;
IRPromoter *Promoter = nullptr;
std::set<Value*> AllVisited;
bool isSupportedValue(Value *V);
bool isLegalToPromote(Value *V);
bool TryToPromote(Value *V);
public:
static char ID;
static unsigned TypeSize;
Type *OrigTy = nullptr;
ARMCodeGenPrepare() : FunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetPassConfig>();
}
StringRef getPassName() const override { return "ARM IR optimizations"; }
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
bool doFinalization(Module &M) override;
};
}
static bool generateSignBits(Value *V) {
if (!isa<Instruction>(V))
return false;
unsigned Opc = cast<Instruction>(V)->getOpcode();
return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
Opc == Instruction::SRem;
}
/// Some instructions can use 8- and 16-bit operands, and we don't need to
/// promote anything larger. We disallow booleans to make life easier when
/// dealing with icmps but allow any other integer that is <= 16 bits. Void
/// types are accepted so we can handle switches.
static bool isSupportedType(Value *V) {
Type *Ty = V->getType();
// Allow voids and pointers, these won't be promoted.
if (Ty->isVoidTy() || Ty->isPointerTy())
return true;
if (auto *Ld = dyn_cast<LoadInst>(V))
Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType();
const IntegerType *IntTy = dyn_cast<IntegerType>(Ty);
if (!IntTy)
return false;
return IntTy->getBitWidth() == ARMCodeGenPrepare::TypeSize;
}
/// Return true if the given value is a source in the use-def chain, producing
/// a narrow (i8, i16) value. These values will be zext to start the promotion
/// of the tree to i32. We guarantee that these won't populate the upper bits
/// of the register. ZExt on the loads will be free, and the same for call
/// return values because we only accept ones that guarantee a zeroext ret val.
/// Many arguments will have the zeroext attribute too, so those would be free
/// too.
static bool isSource(Value *V) {
if (!isa<IntegerType>(V->getType()))
return false;
// TODO Allow zext to be sources.
if (isa<Argument>(V))
return true;
else if (isa<LoadInst>(V))
return true;
else if (isa<BitCastInst>(V))
return true;
else if (auto *Call = dyn_cast<CallInst>(V))
return Call->hasRetAttr(Attribute::AttrKind::ZExt);
else if (auto *Trunc = dyn_cast<TruncInst>(V))
return isSupportedType(Trunc);
return false;
}
/// Return true if V will require any promoted values to be truncated for the
/// the IR to remain valid. We can't mutate the value type of these
/// instructions.
static bool isSink(Value *V) {
// TODO The truncate also isn't actually necessary because we would already
// proved that the data value is kept within the range of the original data
// type.
auto UsesNarrowValue = [](Value *V) {
return V->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize;
};
if (auto *Store = dyn_cast<StoreInst>(V))
return UsesNarrowValue(Store->getValueOperand());
if (auto *Return = dyn_cast<ReturnInst>(V))
return UsesNarrowValue(Return->getReturnValue());
if (auto *Trunc = dyn_cast<TruncInst>(V))
return UsesNarrowValue(Trunc->getOperand(0));
if (auto *ZExt = dyn_cast<ZExtInst>(V))
return UsesNarrowValue(ZExt->getOperand(0));
if (auto *ICmp = dyn_cast<ICmpInst>(V))
return ICmp->isSigned();
return isa<CallInst>(V);
}
/// Return whether the instruction can be promoted within any modifications to
/// it's operands or result.
static bool isSafeOverflow(Instruction *I) {
// FIXME Do we need NSW too?
if (isa<OverflowingBinaryOperator>(I) && I->hasNoUnsignedWrap())
return true;
unsigned Opc = I->getOpcode();
if (Opc == Instruction::Add || Opc == Instruction::Sub) {
// We don't care if the add or sub could wrap if the value is decreasing
// and is only being used by an unsigned compare.
if (!I->hasOneUse() ||
!isa<ICmpInst>(*I->user_begin()) ||
!isa<ConstantInt>(I->getOperand(1)))
return false;
auto *CI = cast<ICmpInst>(*I->user_begin());
if (CI->isSigned())
return false;
bool NegImm = cast<ConstantInt>(I->getOperand(1))->isNegative();
bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
((Opc == Instruction::Add) && NegImm);
if (!IsDecreasing)
return false;
LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n");
return true;
}
return false;
}
static bool shouldPromote(Value *V) {
if (!isa<IntegerType>(V->getType()) || isSink(V))
return false;
if (isSource(V))
return true;
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
if (isa<ICmpInst>(I))
return false;
return true;
}
/// Return whether we can safely mutate V's type to ExtTy without having to be
/// concerned with zero extending or truncation.
static bool isPromotedResultSafe(Value *V) {
if (!isa<Instruction>(V))
return true;
if (generateSignBits(V))
return false;
// If I is only being used by something that will require its value to be
// truncated, then we don't care about the promoted result.
auto *I = cast<Instruction>(V);
if (I->hasOneUse() && isSink(*I->use_begin()))
return true;
if (isa<OverflowingBinaryOperator>(I))
return isSafeOverflow(I);
return true;
}
/// Return the intrinsic for the instruction that can perform the same
/// operation but on a narrow type. This is using the parallel dsp intrinsics
/// on scalar values.
static Intrinsic::ID getNarrowIntrinsic(Instruction *I) {
// Whether we use the signed or unsigned versions of these intrinsics
// doesn't matter because we're not using the GE bits that they set in
// the APSR.
switch(I->getOpcode()) {
default:
break;
case Instruction::Add:
return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_uadd16 :
Intrinsic::arm_uadd8;
case Instruction::Sub:
return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_usub16 :
Intrinsic::arm_usub8;
}
llvm_unreachable("unhandled opcode for narrow intrinsic");
}
void IRPromoter::Mutate(Type *OrigTy,
SmallPtrSetImpl<Value*> &Visited,
SmallPtrSetImpl<Value*> &Sources,
SmallPtrSetImpl<Instruction*> &Sinks) {
IRBuilder<> Builder{Ctx};
Type *ExtTy = Type::getInt32Ty(M->getContext());
SmallPtrSet<Value*, 8> Promoted;
LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from "
<< ARMCodeGenPrepare::TypeSize << " to 32-bits\n");
// Cache original types.
DenseMap<Value*, Type*> TruncTysMap;
for (auto *V : Visited)
TruncTysMap[V] = V->getType();
auto ReplaceAllUsersOfWith = [&](Value *From, Value *To) {
SmallVector<Instruction*, 4> Users;
Instruction *InstTo = dyn_cast<Instruction>(To);
for (Use &U : From->uses()) {
auto *User = cast<Instruction>(U.getUser());
if (InstTo && User->isIdenticalTo(InstTo))
continue;
Users.push_back(User);
}
for (auto *U : Users)
U->replaceUsesOfWith(From, To);
};
auto FixConst = [&](ConstantInt *Const, Instruction *I) {
Constant *NewConst = isSafeOverflow(I) && Const->isNegative() ?
ConstantExpr::getSExt(Const, ExtTy) :
ConstantExpr::getZExt(Const, ExtTy);
I->replaceUsesOfWith(Const, NewConst);
};
auto InsertDSPIntrinsic = [&](Instruction *I) {
LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
<< *I << "\n");
Function *DSPInst =
Intrinsic::getDeclaration(M, getNarrowIntrinsic(I));
Builder.SetInsertPoint(I);
Builder.SetCurrentDebugLocation(I->getDebugLoc());
Value *Args[] = { I->getOperand(0), I->getOperand(1) };
CallInst *Call = Builder.CreateCall(DSPInst, Args);
ReplaceAllUsersOfWith(I, Call);
InstsToRemove.push_back(I);
NewInsts.insert(Call);
TruncTysMap[Call] = OrigTy;
};
auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n");
Builder.SetInsertPoint(InsertPt);
if (auto *I = dyn_cast<Instruction>(V))
Builder.SetCurrentDebugLocation(I->getDebugLoc());
auto *ZExt = cast<Instruction>(Builder.CreateZExt(V, ExtTy));
if (isa<Argument>(V))
ZExt->moveBefore(InsertPt);
else
ZExt->moveAfter(InsertPt);
ReplaceAllUsersOfWith(V, ZExt);
NewInsts.insert(ZExt);
TruncTysMap[ZExt] = TruncTysMap[V];
};
// First, insert extending instructions between the sources and their users.
LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n");
for (auto V : Sources) {
LLVM_DEBUG(dbgs() << " - " << *V << "\n");
if (auto *I = dyn_cast<Instruction>(V))
InsertZExt(I, I);
else if (auto *Arg = dyn_cast<Argument>(V)) {
BasicBlock &BB = Arg->getParent()->front();
InsertZExt(Arg, &*BB.getFirstInsertionPt());
} else {
llvm_unreachable("unhandled source that needs extending");
}
Promoted.insert(V);
}
LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");
// Then mutate the types of the instructions within the tree. Here we handle
// constant operands.
for (auto *V : Visited) {
if (Sources.count(V))
continue;
auto *I = cast<Instruction>(V);
if (Sinks.count(I))
continue;
for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
Value *Op = I->getOperand(i);
if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
continue;
if (auto *Const = dyn_cast<ConstantInt>(Op))
FixConst(Const, I);
else if (isa<UndefValue>(Op))
I->setOperand(i, UndefValue::get(ExtTy));
}
if (shouldPromote(I)) {
I->mutateType(ExtTy);
Promoted.insert(I);
}
}
// Now we need to remove any zexts that have become unnecessary, as well
// as insert any intrinsics.
for (auto *V : Visited) {
if (Sources.count(V))
continue;
if (!shouldPromote(V) || isPromotedResultSafe(V))
continue;
// Replace unsafe instructions with appropriate intrinsic calls.
InsertDSPIntrinsic(cast<Instruction>(V));
}
auto InsertTrunc = [&](Value *V) -> Instruction* {
if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
return nullptr;
if ((!Promoted.count(V) && !NewInsts.count(V)) || !TruncTysMap.count(V) ||
Sources.count(V))
return nullptr;
Type *TruncTy = TruncTysMap[V];
if (TruncTy == ExtTy)
return nullptr;
LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy << " Trunc for "
<< *V << "\n");
Builder.SetInsertPoint(cast<Instruction>(V));
auto *Trunc = cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
NewInsts.insert(Trunc);
return Trunc;
};
LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n");
// Fix up any stores or returns that use the results of the promoted
// chain.
for (auto I : Sinks) {
LLVM_DEBUG(dbgs() << " - " << *I << "\n");
// Handle calls separately as we need to iterate over arg operands.
if (auto *Call = dyn_cast<CallInst>(I)) {
for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
Value *Arg = Call->getArgOperand(i);
if (Instruction *Trunc = InsertTrunc(Arg)) {
Trunc->moveBefore(Call);
Call->setArgOperand(i, Trunc);
}
}
continue;
}
// Now handle the others.
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
if (Instruction *Trunc = InsertTrunc(I->getOperand(i))) {
Trunc->moveBefore(I);
I->setOperand(i, Trunc);
}
}
}
LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete:\n");
LLVM_DEBUG(dbgs();
for (auto *V : Sources)
V->dump();
for (auto *I : NewInsts)
I->dump();
for (auto *V : Visited) {
if (!Sources.count(V))
V->dump();
});
}
/// We accept most instructions, as well as Arguments and ConstantInsts. We
/// Disallow casts other than zext and truncs and only allow calls if their
/// return value is zeroext. We don't allow opcodes that can introduce sign
/// bits.
bool ARMCodeGenPrepare::isSupportedValue(Value *V) {
if (isa<ICmpInst>(V))
return true;
// Memory instructions
if (isa<StoreInst>(V) || isa<GetElementPtrInst>(V))
return true;
// Branches and targets.
if( isa<BranchInst>(V) || isa<SwitchInst>(V) || isa<BasicBlock>(V))
return true;
// Non-instruction values that we can handle.
if ((isa<Constant>(V) && !isa<ConstantExpr>(V)) || isa<Argument>(V))
return isSupportedType(V);
if (isa<PHINode>(V) || isa<SelectInst>(V) || isa<ReturnInst>(V) ||
isa<LoadInst>(V))
return isSupportedType(V);
// Truncs can be either sources or sinks.
if (auto *Trunc = dyn_cast<TruncInst>(V))
return isSupportedType(Trunc) || isSupportedType(Trunc->getOperand(0));
if (isa<CastInst>(V) && !isa<SExtInst>(V))
return isSupportedType(cast<CastInst>(V)->getOperand(0));
// Special cases for calls as we need to check for zeroext
// TODO We should accept calls even if they don't have zeroext, as they can
// still be sinks.
if (auto *Call = dyn_cast<CallInst>(V))
return isSupportedType(Call) &&
Call->hasRetAttr(Attribute::AttrKind::ZExt);
if (!isa<BinaryOperator>(V))
return false;
if (!isSupportedType(V))
return false;
if (generateSignBits(V)) {
LLVM_DEBUG(dbgs() << "ARM CGP: No, instruction can generate sign bits.\n");
return false;
}
return true;
}
/// Check that the type of V would be promoted and that the original type is
/// smaller than the targeted promoted type. Check that we're not trying to
/// promote something larger than our base 'TypeSize' type.
bool ARMCodeGenPrepare::isLegalToPromote(Value *V) {
if (isPromotedResultSafe(V))
return true;
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
// If promotion is not safe, can we use a DSP instruction to natively
// handle the narrow type?
if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I))
return false;
if (ST->isThumb() && !ST->hasThumb2())
return false;
if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub)
return false;
// TODO
// Would it be profitable? For Thumb code, these parallel DSP instructions
// are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
// Cortex-A, specifically Cortex-A72, the latency is double and throughput is
// halved. They also do not take immediates as operands.
for (auto &Op : I->operands()) {
if (isa<Constant>(Op)) {
if (!EnableDSPWithImms)
return false;
}
}
return true;
}
bool ARMCodeGenPrepare::TryToPromote(Value *V) {
OrigTy = V->getType();
TypeSize = OrigTy->getPrimitiveSizeInBits();
if (TypeSize > 16 || TypeSize < 8)
return false;
if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
return false;
LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << ", TypeSize = "
<< TypeSize << "\n");
SetVector<Value*> WorkList;
SmallPtrSet<Value*, 8> Sources;
SmallPtrSet<Instruction*, 4> Sinks;
WorkList.insert(V);
SmallPtrSet<Value*, 16> CurrentVisited;
CurrentVisited.clear();
// Return true if V was added to the worklist as a supported instruction,
// if it was already visited, or if we don't need to explore it (e.g.
// pointer values and GEPs), and false otherwise.
auto AddLegalInst = [&](Value *V) {
if (CurrentVisited.count(V))
return true;
// Ignore GEPs because they don't need promoting and the constant indices
// will prevent the transformation.
if (isa<GetElementPtrInst>(V))
return true;
if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n");
return false;
}
WorkList.insert(V);
return true;
};
// Iterate through, and add to, a tree of operands and users in the use-def.
while (!WorkList.empty()) {
Value *V = WorkList.back();
WorkList.pop_back();
if (CurrentVisited.count(V))
continue;
// Ignore non-instructions, other than arguments.
if (!isa<Instruction>(V) && !isSource(V))
continue;
// If we've already visited this value from somewhere, bail now because
// the tree has already been explored.
// TODO: This could limit the transform, ie if we try to promote something
// from an i8 and fail first, before trying an i16.
if (AllVisited.count(V))
return false;
CurrentVisited.insert(V);
AllVisited.insert(V);
// Calls can be both sources and sinks.
if (isSink(V))
Sinks.insert(cast<Instruction>(V));
if (isSource(V))
Sources.insert(V);
else if (auto *I = dyn_cast<Instruction>(V)) {
// Visit operands of any instruction visited.
for (auto &U : I->operands()) {
if (!AddLegalInst(U))
return false;
}
}
// Don't visit users of a node which isn't going to be mutated unless its a
// source.
if (isSource(V) || shouldPromote(V)) {
for (Use &U : V->uses()) {
if (!AddLegalInst(U.getUser()))
return false;
}
}
}
LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
for (auto *I : CurrentVisited)
I->dump();
);
unsigned ToPromote = 0;
for (auto *V : CurrentVisited) {
if (Sources.count(V))
continue;
if (Sinks.count(cast<Instruction>(V)))
continue;
++ToPromote;
}
if (ToPromote < 2)
return false;
Promoter->Mutate(OrigTy, CurrentVisited, Sources, Sinks);
return true;
}
bool ARMCodeGenPrepare::doInitialization(Module &M) {
Promoter = new IRPromoter(&M);
return false;
}
bool ARMCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F) || DisableCGP)
return false;
auto *TPC = &getAnalysis<TargetPassConfig>();
if (!TPC)
return false;
const TargetMachine &TM = TPC->getTM<TargetMachine>();
ST = &TM.getSubtarget<ARMSubtarget>(F);
bool MadeChange = false;
LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n");
// Search up from icmps to try to promote their operands.
for (BasicBlock &BB : F) {
auto &Insts = BB.getInstList();
for (auto &I : Insts) {
if (AllVisited.count(&I))
continue;
if (isa<ICmpInst>(I)) {
auto &CI = cast<ICmpInst>(I);
// Skip signed or pointer compares
if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType()))
continue;
for (auto &Op : CI.operands()) {
if (auto *I = dyn_cast<Instruction>(Op))
MadeChange |= TryToPromote(I);
}
}
}
Promoter->Cleanup();
LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
dbgs();
report_fatal_error("Broken function after type promotion");
});
}
if (MadeChange)
LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n");
return MadeChange;
}
bool ARMCodeGenPrepare::doFinalization(Module &M) {
delete Promoter;
return false;
}
INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE,
"ARM IR optimizations", false, false)
INITIALIZE_PASS_END(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations",
false, false)
char ARMCodeGenPrepare::ID = 0;
unsigned ARMCodeGenPrepare::TypeSize = 0;
FunctionPass *llvm::createARMCodeGenPreparePass() {
return new ARMCodeGenPrepare();
}