Files
clang-p2996/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
MaheshRavishankar c873e5f87d [mlir][TilingInterface] Handle multi operand consumer fusion. (#145193)
For consumer fusion cases of this form

```
%0:2 = scf.forall .. shared_outs(%arg0 = ..., %arg0 = ...) {

  tensor.parallel_insert_slice ... into %arg0
  tensor.parallel_insert_slice ... into %arg1
}
%1 = linalg.generic ... ins(%0#0, %0#1)
```

the current consumer fusion that handles one slice at a time cannot fuse
the consumer into the loop, since fusing along one slice will create and
SSA violation on the other use from the `scf.forall`. The solution is to
allow consumer fusion to allow considering multiple slices at once. This
PR changes the `TilingInterface` methods related to consumer fusion,
i.e.

- `getTiledImplementationFromOperandTile`
- `getIterationDomainFromOperandTile`

to allow fusion while considering multiple operands. It is upto the
`TilingInterface` implementation to return an error if a list of tiles
of the operands cannot result in a consistent implementation of the
tiled operation.

The Linalg operation implementation of `TilingInterface` has been
modified to account for these changes and allow cases where operand
tiles that can result in a consistent tiling implementation are handled.

---------

Signed-off-by: MaheshRavishankar <mahesh.ravishankar@gmail.com>
2025-06-25 11:54:38 -07:00

914 lines
56 KiB
MLIR

// RUN: mlir-opt --transform-interpreter --cse --split-input-file --verify-diagnostics %s | FileCheck %s
#map = affine_map<(d0) -> (d0)>
module {
func.func @fuse_tileable_consumer_scf_for(%arg0: tensor<32xf32>, %arg1: tensor<32xf32>, %arg2: tensor<64xf32>) -> tensor<64xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1:2 = scf.for %arg3 = %c0 to %c64 step %c4 iter_args(%arg4 = %arg2, %arg5 = %arg2) -> (tensor<64xf32>, tensor<64xf32>) {
%extracted_slice = tensor.extract_slice %arg4[%arg3] [32] [1] : tensor<64xf32> to tensor<32xf32>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 : tensor<32xf32>, tensor<32xf32>) outs(%extracted_slice : tensor<32xf32>) {
^bb0(%in: f32, %in_16: f32, %out: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.addf %out, %13 : f32
linalg.yield %14 : f32
} -> tensor<32xf32>
%4 = tensor.insert_slice %3 into %arg4[%arg3] [32] [1] : tensor<32xf32> into tensor<64xf32>
scf.yield %arg5, %4 : tensor<64xf32>, tensor<64xf32>
}
%in_operand_2 = tensor.empty() : tensor<64xf32>
%out_operand_3 = tensor.empty() : tensor<64xf32>
%2 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>} ins(%1#1, %in_operand_2 : tensor<64xf32>, tensor<64xf32>) outs(%out_operand_3 : tensor<64xf32>) -> tensor<64xf32>
return %2 : tensor<64xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%loop = transform.structured.match ops{["scf.for"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%yield = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %yield in (%loop)
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @fuse_tileable_consumer_scf_for(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64xf32>)
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %0 = tensor.empty() : tensor<64xf32>
// CHECK: %[[FINAL_RESULT:.*]]:3 = scf.for %[[IV:.*]] = %[[C0]]
// CHECK-SAME: iter_args(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG:.*]] = %0)
// CHECK-SAME: {
// CHECK: %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: %[[MAT_OUT:.*]] = linalg.generic
// CHECK-SAME: outs(%[[MAT_OUT_SLICE]] : tensor<32xf32>)
// CHECK: %[[INSERT_MAT:.*]] = tensor.insert_slice %[[MAT_OUT]] into %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %0[%[[IV]]] [32] [1]
// CHECK: %[[SLICE_OUT:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: %[[ELEM_OUT:.*]] = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
// CHECK-SAME: ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
// CHECK-SAME: outs(%[[SLICE_OUT]] :
// CHECK: %[[INSERT_ELEM:.*]] = tensor.insert_slice %[[ELEM_OUT]] into %[[ELEM_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: scf.yield %[[SECOND_OUT_ARG]], %[[INSERT_MAT]], %[[INSERT_ELEM]] :
// CHECK: }
// CHECK: return %[[FINAL_RESULT]]#2 :
// -----
module {
func.func @fuse_tileable_consumer_scf_forall(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x64xf32>) -> tensor<64x64xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1:2 = scf.forall (%arg3, %arg4) in (2, 2) shared_outs(%arg5 = %arg2, %arg6 = %arg2) -> (tensor<64x64xf32>, tensor<64x64xf32>) {
%extracted_slice = tensor.extract_slice %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x64xf32> to tensor<32x32xf32>
%extracted_slice_1 = tensor.extract_slice %arg6[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x64xf32> to tensor<32x32xf32>
%3 = linalg.matmul ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) -> tensor<32x32xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %3 into %arg6[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x64xf32>
tensor.parallel_insert_slice %extracted_slice_1 into %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x64xf32>
}
}
%in_operand_2 = tensor.empty() : tensor<64x64xf32>
%out_operand_3 = tensor.empty() : tensor<64x64xf32>
%2 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>} ins(%1#1, %in_operand_2 : tensor<64x64xf32>, tensor<64x64xf32>) outs(%out_operand_3 : tensor<64x64xf32>) -> tensor<64x64xf32>
return %2 : tensor<64x64xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_ops = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%loop = transform.structured.match ops{["scf.forall"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%first_slice_op, %second_slice_op = transform.split_handle %slice_ops
: (!transform.any_op)
-> (!transform.any_op, !transform.any_op)
%a, %b = transform.test.fuse_consumer %first_slice_op in (%loop)
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @fuse_tileable_consumer_scf_forall(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x64xf32>)
// CHECK: %[[OUT_INIT:.*]] = tensor.empty() : tensor<64x64xf32>
// CHECK: %[[FINAL_RESULT:.*]]:3 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) in (2, 2)
// CHECK-SAME: shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG:.*]] = %[[OUT_INIT]])
// CHECK-SAME: {
// CHECK: %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[SECOND_ARG_SLICE:.*]] = tensor.extract_slice %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[MAT_OUT:.*]] = linalg.matmul
// CHECK-SAME: outs(%[[MAT_OUT_SLICE]] :
// CHECK: %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %[[OUT_INIT]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[SLICE_OUT:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[ELEM_OUT:.*]] = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
// CHECK-SAME: ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
// CHECK-SAME: outs(%[[SLICE_OUT]] :
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[MAT_OUT]] into %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[SECOND_ARG_SLICE]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[ELEM_OUT]] into %[[ELEM_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: }
// CHECK: }
// CHECK: return %[[FINAL_RESULT]]#2 :
// -----
#map = affine_map<(d0) -> (d0)>
module {
func.func @fuse_tileable_consumer_scf_for_multi_yielding_consumer(%arg0: tensor<32xf32>, %arg1: tensor<32xf32>, %arg2: tensor<64xf32>) -> tensor<64xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1:2 = scf.for %arg3 = %c0 to %c64 step %c4 iter_args(%arg4 = %arg2, %arg5 = %arg2) -> (tensor<64xf32>, tensor<64xf32>) {
%extracted_slice = tensor.extract_slice %arg4[%arg3] [32] [1] : tensor<64xf32> to tensor<32xf32>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 : tensor<32xf32>, tensor<32xf32>) outs(%extracted_slice : tensor<32xf32>) {
^bb0(%in: f32, %in_16: f32, %out: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.addf %out, %13 : f32
linalg.yield %14 : f32
} -> tensor<32xf32>
%4 = tensor.insert_slice %3 into %arg4[%arg3] [32] [1] : tensor<32xf32> into tensor<64xf32>
scf.yield %arg5, %4 : tensor<64xf32>, tensor<64xf32>
}
%in_operand_2 = tensor.empty() : tensor<64xf32>
%out_operand_3 = tensor.empty() : tensor<64xf32>
%out_operand_4 = tensor.empty() : tensor<64xf32>
%2:2 = linalg.generic {indexing_maps = [#map, #map, #map, #map], iterator_types = ["parallel"]} ins(%1#1, %in_operand_2 : tensor<64xf32>, tensor<64xf32>) outs(%out_operand_3, %out_operand_4 : tensor<64xf32>, tensor<64xf32>) {
^bb0(%in: f32, %in_16: f32, %out_0: f32, %out_1: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.subf %out_0, %13 : f32
%15 = arith.addf %out_1, %in : f32
linalg.yield %14, %15 : f32, f32
} -> (tensor<64xf32>, tensor<64xf32>)
return %2#1 : tensor<64xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%yield = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%loop = transform.structured.match ops{["scf.for"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %yield in (%loop)
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @fuse_tileable_consumer_scf_for_multi_yielding_consumer(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64xf32>)
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %0 = tensor.empty() : tensor<64xf32>
// CHECK: %[[FINAL_RESULT:.*]]:4 = scf.for %[[IV:.*]] = %[[C0]]
// CHECK-SAME: iter_args(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG_0:.*]] = %0, %[[ELEM_OUT_ARG_1:.*]] = %0)
// CHECK-SAME: {
// CHECK: %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: %[[MAT_OUT:.*]] = linalg.generic
// CHECK-SAME: outs(%[[MAT_OUT_SLICE]] : tensor<32xf32>)
// CHECK: %[[INSERT_MAT:.*]] = tensor.insert_slice %[[MAT_OUT]] into %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
// CHECK: %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %0[%[[IV]]] [32] [1]
// CHECK: %[[SLICE_OUT_0:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_0]][%[[IV]]] [32] [1]
// CHECK: %[[SLICE_OUT_1:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_1]][%[[IV]]] [32] [1]
// CHECK: %[[ELEM_OUT:.*]]:2 = linalg.generic
// CHECK-SAME: ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
// CHECK-SAME: outs(%[[SLICE_OUT_0]], %[[SLICE_OUT_1]] :
// CHECK: %[[INSERT_ELEM_0:.*]] = tensor.insert_slice %[[ELEM_OUT]]#0 into %[[ELEM_OUT_ARG_0]][%[[IV]]] [32] [1]
// CHECK: %[[INSERT_ELEM_1:.*]] = tensor.insert_slice %[[ELEM_OUT]]#1 into %[[ELEM_OUT_ARG_1]][%[[IV]]] [32] [1]
// CHECK: scf.yield %[[SECOND_OUT_ARG]], %[[INSERT_MAT]], %[[INSERT_ELEM_0]], %[[INSERT_ELEM_1]] :
// CHECK: }
// CHECK: return %[[FINAL_RESULT]]#3 :
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
module {
func.func @fuse_tileable_consumer_scf_forall_multi_yielding_consumer(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x64xf32>, %arg3: tensor<64x32xf32>) -> (tensor<64x64xf32>, tensor<2048xf32>) {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%0:2 = scf.forall (%arg4, %arg5) in (2, 2) shared_outs(%arg6 = %arg3, %arg7 = %arg2) -> (tensor<64x32xf32>, tensor<64x64xf32>) {
%extracted_slice = tensor.extract_slice %arg6[%arg4, %arg5] [32, 32] [1, 1] : tensor<64x32xf32> to tensor<32x32xf32>
%extracted_slice_0 = tensor.extract_slice %arg7[%arg4, %arg5] [32, 32] [1, 1] : tensor<64x64xf32> to tensor<32x32xf32>
%6 = linalg.matmul ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) -> tensor<32x32xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %6 into %arg7[%arg4, %arg5] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x64xf32>
tensor.parallel_insert_slice %extracted_slice_0 into %arg6[%arg4, %arg5] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x32xf32>
}
}
%1 = tensor.empty() : tensor<64x64xf32>
%2 = tensor.empty() : tensor<64x64xf32>
%3 = tensor.empty() : tensor<64x64xf32>
%4:2 = linalg.generic {indexing_maps = [#map, #map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%0#1, %1 : tensor<64x64xf32>, tensor<64x64xf32>) outs(%2, %3 : tensor<64x64xf32>, tensor<64x64xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32, %out_1: f32):
%6 = arith.mulf %in, %in_0 : f32
%7 = arith.subf %out, %6 : f32
%8 = arith.addf %out_1, %in : f32
linalg.yield %7, %8 : f32, f32
} -> (tensor<64x64xf32>, tensor<64x64xf32>)
%5 = tensor.empty() : tensor<2048xf32>
%unpack = linalg.unpack %0#0 outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32] into %5 : tensor<64x32xf32> -> tensor<2048xf32>
return %4#1, %unpack : tensor<64x64xf32>, tensor<2048xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_ops = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%loop = transform.structured.match ops{["scf.forall"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%first_slice_op, %second_slice_op = transform.split_handle %slice_ops
: (!transform.any_op)
-> (!transform.any_op, !transform.any_op)
%a, %b = transform.test.fuse_consumer %first_slice_op in (%loop)
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @fuse_tileable_consumer_scf_forall_multi_yielding_consumer(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x64xf32>
// CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]: tensor<64x32xf32>)
// CHECK: %[[OUT_INIT:.*]] = tensor.empty() : tensor<64x64xf32>
// CHECK: %[[FINAL_RESULT:.*]]:4 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) in (2, 2)
// CHECK-SAME: shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG3]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG_0:.*]] = %[[OUT_INIT]], %[[ELEM_OUT_ARG_1:.*]] = %[[OUT_INIT]])
// CHECK-SAME: {
// CHECK: %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[SECOND_ARG_SLICE:.*]] = tensor.extract_slice %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[MAT_OUT:.*]] = linalg.matmul
// CHECK-SAME: outs(%[[MAT_OUT_SLICE]] :
// CHECK: %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %[[OUT_INIT]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[SLICE_OUT_0:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_0]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[SLICE_OUT_1:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_1]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[ELEM_OUT:.*]]:2 = linalg.generic
// CHECK-SAME: ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
// CHECK-SAME: outs(%[[SLICE_OUT_0]], %[[SLICE_OUT_1]] :
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[MAT_OUT]] into %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[SECOND_ARG_SLICE]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[ELEM_OUT]]#0 into %[[ELEM_OUT_ARG_0]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[ELEM_OUT]]#1 into %[[ELEM_OUT_ARG_1]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: }
// CHECK: }
// CHECK: %[[UNPACK:.*]] = linalg.unpack %[[FINAL_RESULT]]#0 outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32] into %{{.*}} : tensor<64x32xf32> -> tensor<2048xf32>
// CHECK: return %[[FINAL_RESULT]]#3, %[[UNPACK]] :
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
module {
func.func @fuse_unpack_consumer_into_scf_forall(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x32xf32>) -> tensor<2048xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1 = scf.forall (%arg3, %arg4) = (0, 0) to (64, 32) step (32, 32) shared_outs(%arg5 = %arg2) -> (tensor<64x32xf32>) {
%extracted_slice = tensor.extract_slice %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x32xf32> to tensor<32x32xf32>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) {
^bb0(%in: f32, %in_16: f32, %out: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.addf %out, %13 : f32
linalg.yield %14 : f32
} -> tensor<32x32xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %3 into %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x32xf32>
}
}
%output = tensor.empty() : tensor<2048xf32>
%unpack = linalg.unpack %1 outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32] into %output : tensor<64x32xf32> -> tensor<2048xf32>
return %unpack : tensor<2048xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_op = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%loop = transform.structured.match ops{["scf.forall"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %slice_op in (%loop)
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK-DAG: #[[UNPACK_RESULT_OFFSET_MAP:.*]] = affine_map<(d0) -> (d0 * 32)>
// CHECK-DAG: #[[UNPACK_RESULT_SIZE_MAP:.*]] = affine_map<(d0) -> (1024, d0 * -32 + 2048)>
// CHECK: func.func @fuse_unpack_consumer_into_scf_forall(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x32xf32>)
// CHECK: %[[OUT_INIT:.*]] = tensor.empty() : tensor<2048xf32>
// CHECK: %[[FINAL_RESULT:.*]]:2 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) = (0, 0) to (64, 32) step (32, 32)
// CHECK-SAME: shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[UNPACK_OUT_ARG:.*]] = %[[OUT_INIT]])
// CHECK-SAME: {
// CHECK: %[[GENERIC_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[GENERIC_OUT:.*]] = linalg.generic
// CHECK-SAME: outs(%[[GENERIC_OUT_SLICE]] :
// CHECK-DAG: %[[UNPACK_RESULT_OFFSET:.*]] = affine.apply #[[UNPACK_RESULT_OFFSET_MAP]](%[[IV1]])
// CHECK-DAG: %[[UNPACK_RESULT_SIZE:.*]] = affine.min #[[UNPACK_RESULT_SIZE_MAP]](%[[IV1]])
// CHECK: %[[TILED_UNPACK_DEST:.*]] = tensor.extract_slice %[[UNPACK_OUT_ARG]][%[[UNPACK_RESULT_OFFSET]]] [%[[UNPACK_RESULT_SIZE]]] [1]
// CHECK: %[[TILED_UNPACK_OUT:.*]] = linalg.unpack %[[GENERIC_OUT]]
// CHECK-SAME: outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32]
// CHECK-SAME: into %[[TILED_UNPACK_DEST]]
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[GENERIC_OUT]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[TILED_UNPACK_OUT]] into %[[UNPACK_OUT_ARG]][%[[UNPACK_RESULT_OFFSET]]] [%[[UNPACK_RESULT_SIZE]]] [1]
// CHECK: }
// CHECK: }
// CHECK: return %[[FINAL_RESULT]]#1 :
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
module {
func.func @fuse_unaligned_unpack_consumer_into_scf_forall(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x32xf32>) -> tensor<2047xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1 = scf.forall (%arg3, %arg4) = (0, 0) to (64, 32) step (32, 32) shared_outs(%arg5 = %arg2) -> (tensor<64x32xf32>) {
%extracted_slice = tensor.extract_slice %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x32xf32> to tensor<32x32xf32>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) {
^bb0(%in: f32, %in_16: f32, %out: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.addf %out, %13 : f32
linalg.yield %14 : f32
} -> tensor<32x32xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %3 into %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x32xf32>
}
}
%output = tensor.empty() : tensor<2047xf32>
%unpack = linalg.unpack %1 outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32] into %output : tensor<64x32xf32> -> tensor<2047xf32>
return %unpack : tensor<2047xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_op = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%loop = transform.structured.match ops{["scf.forall"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %slice_op in (%loop)
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK-DAG: #[[UNPACK_RESULT_OFFSET_MAP:.*]] = affine_map<(d0) -> (d0 * 32)>
// CHECK-DAG: #[[UNPACK_RESULT_SIZE_MAP:.*]] = affine_map<(d0) -> (1024, d0 * -32 + 2047)>
// CHECK: func.func @fuse_unaligned_unpack_consumer_into_scf_forall(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x32xf32>)
// CHECK: %[[OUT_INIT:.*]] = tensor.empty() : tensor<2047xf32>
// CHECK: %[[FINAL_RESULT:.*]]:2 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) = (0, 0) to (64, 32) step (32, 32)
// CHECK-SAME: shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[UNPACK_OUT_ARG:.*]] = %[[OUT_INIT]])
// CHECK-SAME: {
// CHECK: %[[GENERIC_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[GENERIC_OUT:.*]] = linalg.generic
// CHECK-SAME: outs(%[[GENERIC_OUT_SLICE]] :
// CHECK-DAG: %[[UNPACK_RESULT_OFFSET:.*]] = affine.apply #[[UNPACK_RESULT_OFFSET_MAP]](%[[IV1]])
// CHECK-DAG: %[[UNPACK_RESULT_SIZE:.*]] = affine.min #[[UNPACK_RESULT_SIZE_MAP]](%[[IV1]])
// CHECK: %[[TILED_UNPACK_DEST:.*]] = tensor.extract_slice %[[UNPACK_OUT_ARG]][%[[UNPACK_RESULT_OFFSET]]] [%[[UNPACK_RESULT_SIZE]]] [1]
// CHECK: %[[TILED_UNPACK_OUT:.*]] = linalg.unpack %[[GENERIC_OUT]]
// CHECK-SAME: outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32]
// CHECK-SAME: into %[[TILED_UNPACK_DEST]]
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[GENERIC_OUT]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[TILED_UNPACK_OUT]] into %[[UNPACK_OUT_ARG]][%[[UNPACK_RESULT_OFFSET]]] [%[[UNPACK_RESULT_SIZE]]] [1]
// CHECK: }
// CHECK: }
// CHECK: return %[[FINAL_RESULT]]#1 :
// -----
#map = affine_map<(d0, d1) -> (d0, d1)>
module {
func.func @fuse_pack_consumer_into_scf_forall(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x32xf32>) -> tensor<4x32x16xf32> {
%c4 = arith.constant 4 : index
%c64 = arith.constant 64 : index
%c0 = arith.constant 0 : index
%1 = scf.forall (%arg3, %arg4) in (2, 2) shared_outs(%arg5 = %arg2) -> (tensor<64x32xf32>) {
%extracted_slice = tensor.extract_slice %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x32xf32> to tensor<32x32xf32>
%3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) {
^bb0(%in: f32, %in_16: f32, %out: f32):
%13 = arith.mulf %in, %in_16 : f32
%14 = arith.addf %out, %13 : f32
linalg.yield %14 : f32
} -> tensor<32x32xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %3 into %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x32xf32>
}
}
%output = tensor.empty() : tensor<4x32x16xf32>
%pack = linalg.pack %1 inner_dims_pos = [0] inner_tiles = [16] into %output : tensor<64x32xf32> -> tensor<4x32x16xf32>
return %pack : tensor<4x32x16xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_op = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%loop = transform.structured.match ops{["scf.forall"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %slice_op in (%loop)
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: #[[PACK_RESULT_MAP:.*]] = affine_map<(d0) -> (d0 floordiv 16)>
// CHECK: func.func @fuse_pack_consumer_into_scf_forall(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x32xf32>)
// CHECK: %[[OUT_INIT:.*]] = tensor.empty() : tensor<4x32x16xf32>
// CHECK: %[[FINAL_RESULT:.*]]:2 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) in (2, 2)
// CHECK-SAME: shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[PACK_OUT_ARG:.*]] = %[[OUT_INIT]])
// CHECK-SAME: {
// CHECK: %[[GENERIC_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: %[[GENERIC_OUT:.*]] = linalg.generic
// CHECK-SAME: outs(%[[GENERIC_OUT_SLICE]] :
// CHECK: %[[PACK_RESULT_OFFSET:.*]] = affine.apply #[[PACK_RESULT_MAP]](%[[IV1]])
// CHECK: %[[TILED_PACK_DEST:.*]] = tensor.extract_slice %[[PACK_OUT_ARG]][%[[PACK_RESULT_OFFSET]], %[[IV2]], 0] [2, 32, 16] [1, 1, 1]
// CHECK: %[[TILED_PACK_OUT:.*]] = linalg.pack %[[GENERIC_OUT]]
// CHECK-SAME: inner_dims_pos = [0] inner_tiles = [16]
// CHECK-SAME: into %[[TILED_PACK_DEST]]
// CHECK: scf.forall.in_parallel {
// CHECK: tensor.parallel_insert_slice %[[GENERIC_OUT]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
// CHECK: tensor.parallel_insert_slice %[[TILED_PACK_OUT]] into %[[PACK_OUT_ARG]][%[[PACK_RESULT_OFFSET]], %[[IV2]], 0] [2, 32, 16] [1, 1, 1]
// -----
module {
func.func @fuse_add_multiple_tilable_consumers(%arg0: tensor<256x256xf32>, %arg1: tensor<256x256xf32>, %arg2: tensor<256x256xf32>) -> (tensor<256x256xf32>, tensor<256x256xf32>) {
%c0 = arith.constant 0 : index
%c64 = arith.constant 64 : index
%c256 = arith.constant 256 : index
%cst = arith.constant 0.000000e+00 : f32
%dest0 = tensor.empty() : tensor<256x256xf32>
%1 = scf.for %arg3 = %c0 to %c256 step %c64 iter_args(%arg4 = %dest0) -> (tensor<256x256xf32>) {
%extracted_slice_1 = tensor.extract_slice %arg4[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%extracted_slice_2 = tensor.extract_slice %arg0[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%extracted_slice_3 = tensor.extract_slice %arg1[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%3 = linalg.add ins(%extracted_slice_2, %extracted_slice_3 : tensor<64x256xf32>, tensor<64x256xf32>) outs(%extracted_slice_1 : tensor<64x256xf32>) -> tensor<64x256xf32>
%insert_slice = tensor.insert_slice %3 into %arg4[%arg3, 0] [64, 256] [1, 1] : tensor<64x256xf32> into tensor<256x256xf32>
scf.yield %insert_slice : tensor<256x256xf32>
}
%4 = linalg.mul ins(%1, %arg2 : tensor<256x256xf32>, tensor<256x256xf32>) outs(%dest0 : tensor<256x256xf32>) -> tensor<256x256xf32>
%5 = linalg.exp ins(%1 : tensor<256x256xf32>) outs(%dest0 : tensor<256x256xf32>) -> tensor<256x256xf32>
return %4, %5 : tensor<256x256xf32>, tensor<256x256xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_op = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%loop = transform.structured.match ops{["scf.for"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %slice_op in (%loop) num_consumer_to_fuse = 2
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @fuse_add_multiple_tilable_consumers(
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<256x256xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<256x256xf32>
// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<256x256xf32>
// CHECK: %[[dest0:.*]] = tensor.empty() : tensor<256x256xf32>
// CHECK: %[[LOOP_RESULT:.*]]:3 = scf.for %[[IV1:.*]] = %[[C0]]
// CHECK-SAME: iter_args(%[[FIRST_OUT_ARG:.*]] = %[[dest0]], %[[SECOND_OUT_ARG:.*]] = %[[dest0]], %[[THIRD_OUT_ARG:.*]] = %[[dest0]])
// CHECK-SAME: {
// CHECK: %[[ADD_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], 0] [64, 256] [1, 1]
// CHECK: %[[ADD_INS0_SLICE:.*]] = tensor.extract_slice %[[ARG0]][%[[IV1]], 0] [64, 256] [1, 1]
// CHECK: %[[ADD_INS1_SLICE:.*]] = tensor.extract_slice %[[ARG1]][%[[IV1]], 0] [64, 256] [1, 1]
// CHECK: %[[TILED_ADD_OUT:.*]] = linalg.add
// CHECK-SAME: ins(%[[ADD_INS0_SLICE]], %[[ADD_INS1_SLICE]] :
// CHECK-SAME: outs(%[[ADD_OUT_SLICE]] :
// CHECK: %[[INSERT_ADD:.*]] = tensor.insert_slice %[[TILED_ADD_OUT]] into %[[FIRST_OUT_ARG]][%[[IV1]], 0] [64, 256] [1, 1]
// CHECK: %[[EXP_OUT_SLICE:.*]] = tensor.extract_slice %[[SECOND_OUT_ARG]][%[[IV1]], 0] [64, 256] [1, 1]
// CHECK: %[[TILED_EXP_OUT:.*]] = linalg.exp
// CHECK-SAME: ins(%[[TILED_ADD_OUT]] :
// CHECK-SAME: outs(%[[EXP_OUT_SLICE]] :
// CHECK: %[[MUL_INS2_SLICE:.*]] = tensor.extract_slice %[[ARG2]][%[[IV1]], 0] [64, 256] [1, 1]
// CHECK: %[[MUL_OUT_SLICE:.*]] = tensor.extract_slice %[[THIRD_OUT_ARG]][%[[IV1]], 0] [64, 256] [1, 1]
// CHECK: %[[TILED_MUL_OUT:.*]] = linalg.mul
// CHECK-SAME: ins(%[[TILED_ADD_OUT]], %[[MUL_INS2_SLICE]] :
// CHECK-SAME: outs(%[[MUL_OUT_SLICE]] :
// CHECK: %[[INSERT_EXP:.*]] = tensor.insert_slice %[[TILED_EXP_OUT]] into %[[SECOND_OUT_ARG]][%[[IV1]], 0] [64, 256] [1, 1]
// CHECK: %[[INSERT_MUL:.*]] = tensor.insert_slice %[[TILED_MUL_OUT]] into %[[THIRD_OUT_ARG]][%[[IV1]], 0] [64, 256] [1, 1]
// CHECK: scf.yield %[[INSERT_ADD]], %[[INSERT_EXP]], %[[INSERT_MUL]] :
// CHECK: }
// CHECK: return %[[LOOP_RESULT]]#2, %[[LOOP_RESULT]]#1 :
// -----
module {
func.func @no_fuse_only_dps_consumer(%arg0: tensor<256x256xf32>, %arg1: tensor<256x256xf32>, %arg2: tensor<256x256xf32>) -> (tensor<256x256xf32>, tensor<258x258xf32>) {
%c0 = arith.constant 0 : index
%c64 = arith.constant 64 : index
%c256 = arith.constant 256 : index
%cst = arith.constant 0.000000e+00 : f32
%dest0 = tensor.empty() : tensor<256x256xf32>
%1 = scf.for %arg3 = %c0 to %c256 step %c64 iter_args(%arg4 = %dest0) -> (tensor<256x256xf32>) {
%extracted_slice_1 = tensor.extract_slice %arg4[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%extracted_slice_2 = tensor.extract_slice %arg0[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%extracted_slice_3 = tensor.extract_slice %arg1[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%3 = linalg.add ins(%extracted_slice_2, %extracted_slice_3 : tensor<64x256xf32>, tensor<64x256xf32>) outs(%extracted_slice_1 : tensor<64x256xf32>) -> tensor<64x256xf32>
%insert_slice = tensor.insert_slice %3 into %arg4[%arg3, 0] [64, 256] [1, 1] : tensor<64x256xf32> into tensor<256x256xf32>
scf.yield %insert_slice : tensor<256x256xf32>
}
%dest1 = tensor.empty() : tensor<258x258xf32>
%4 = tensor.insert_slice %1 into %dest1[0, 0] [256, 256] [1, 1] : tensor<256x256xf32> into tensor<258x258xf32>
%5 = linalg.mul ins(%1, %arg2 : tensor<256x256xf32>, tensor<256x256xf32>) outs(%dest0 : tensor<256x256xf32>) -> tensor<256x256xf32>
return %5, %4 : tensor<256x256xf32>, tensor<258x258xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_ops = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%loop = transform.structured.match ops{["scf.for"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%slice_op, %other_slice = transform.split_handle %slice_ops : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
%a, %b = transform.test.fuse_consumer %slice_op in (%loop) num_consumer_to_fuse = 1
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK: func.func @no_fuse_only_dps_consumer(
// CHECK: %[[LOOP_RESULT:.*]]:2 = scf.for {{.*}} {
// CHECK: linalg.add
// CHECK: linalg.mul
// CHECK: scf.yield
// CHECK: }
// CHECK: %[[RES_SLICE:.+]] = tensor.insert_slice
// CHECK: return %[[LOOP_RESULT]]#1, %[[RES_SLICE]]
// -----
#map = affine_map<(d0, d1, d2) -> (d0, d1)>
#map1 = affine_map<(d0, d1, d2) -> (d2)>
#map2 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
module {
func.func @fuse_with_tilable_consumer_with_projected_permutations(%arg0: tensor<256x256xf32>, %arg1: tensor<256x256xf32>, %arg2: tensor<24xf32>) -> tensor<256x256x24xf32> {
%c0 = arith.constant 0 : index
%c64 = arith.constant 64 : index
%c256 = arith.constant 256 : index
%0 = tensor.empty() : tensor<256x256xf32>
%1 = scf.for %arg3 = %c0 to %c256 step %c64 iter_args(%arg4 = %0) -> (tensor<256x256xf32>) {
%extracted_slice = tensor.extract_slice %arg4[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%extracted_slice_0 = tensor.extract_slice %arg0[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%extracted_slice_1 = tensor.extract_slice %arg1[%arg3, 0] [64, 256] [1, 1] : tensor<256x256xf32> to tensor<64x256xf32>
%4 = linalg.add ins(%extracted_slice_0, %extracted_slice_1 : tensor<64x256xf32>, tensor<64x256xf32>) outs(%extracted_slice : tensor<64x256xf32>) -> tensor<64x256xf32>
%inserted_slice = tensor.insert_slice %4 into %arg4[%arg3, 0] [64, 256] [1, 1] : tensor<64x256xf32> into tensor<256x256xf32>
scf.yield %inserted_slice : tensor<256x256xf32>
}
%2 = tensor.empty() : tensor<256x256x24xf32>
%3 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel"]} ins(%1, %arg2 : tensor<256x256xf32>, tensor<24xf32>) outs(%2 : tensor<256x256x24xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32):
%4 = arith.addf %in, %in_0 : f32
linalg.yield %4 : f32
} -> tensor<256x256x24xf32>
return %3 : tensor<256x256x24xf32>
}
}
// CHECK: func.func @fuse_with_tilable_consumer_with_projected_permutations(%[[VAL_0:.*]]: tensor<256x256xf32>, %[[VAL_1:.*]]: tensor<256x256xf32>, %[[VAL_2:.*]]: tensor<24xf32>) -> tensor<256x256x24xf32> {
// CHECK: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_4:.*]] = arith.constant 64 : index
// CHECK: %[[VAL_5:.*]] = arith.constant 256 : index
// CHECK: %[[VAL_6:.*]] = tensor.empty() : tensor<256x256xf32>
// CHECK: %[[VAL_7:.*]] = tensor.empty() : tensor<256x256x24xf32>
// CHECK: %[[VAL_8:.*]]:2 = scf.for %[[VAL_9:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] iter_args(%[[VAL_10:.*]] = %[[VAL_6]], %[[VAL_11:.*]] = %[[VAL_7]]) -> (tensor<256x256xf32>, tensor<256x256x24xf32>) {
// CHECK: %[[VAL_12:.*]] = tensor.extract_slice %[[VAL_10]]{{\[}}%[[VAL_9]], 0] [64, 256] [1, 1]
// CHECK: %[[VAL_13:.*]] = tensor.extract_slice %[[VAL_0]]{{\[}}%[[VAL_9]], 0] [64, 256] [1, 1]
// CHECK: %[[VAL_14:.*]] = tensor.extract_slice %[[VAL_1]]{{\[}}%[[VAL_9]], 0] [64, 256] [1, 1]
// CHECK: %[[VAL_15:.*]] = linalg.add ins(%[[VAL_13]], %[[VAL_14]] : tensor<64x256xf32>, tensor<64x256xf32>) outs(%[[VAL_12]] : tensor<64x256xf32>) -> tensor<64x256xf32>
// CHECK: %[[VAL_16:.*]] = tensor.insert_slice %[[VAL_15]] into %[[VAL_10]]{{\[}}%[[VAL_9]], 0] [64, 256] [1, 1]
// CHECK: %[[VAL_17:.*]] = tensor.extract_slice %[[VAL_2]][0] [24] [1] : tensor<24xf32> to tensor<24xf32>
// CHECK: %[[VAL_18:.*]] = tensor.extract_slice %[[VAL_11]]{{\[}}%[[VAL_9]], 0, 0] [64, 256, 24] [1, 1, 1]
// CHECK: %[[VAL_19:.*]] = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[VAL_15]], %[[VAL_17]] : tensor<64x256xf32>, tensor<24xf32>) outs(%[[VAL_18]] : tensor<64x256x24xf32>) {
// CHECK: ^bb0(%[[VAL_20:.*]]: f32, %[[VAL_21:.*]]: f32, %[[VAL_22:.*]]: f32):
// CHECK: %[[VAL_23:.*]] = arith.addf %[[VAL_20]], %[[VAL_21]] : f32
// CHECK: linalg.yield %[[VAL_23]] : f32
// CHECK: } -> tensor<64x256x24xf32>
// CHECK: %[[VAL_24:.*]] = tensor.insert_slice %[[VAL_25:.*]] into %[[VAL_11]]{{\[}}%[[VAL_9]], 0, 0] [64, 256, 24] [1, 1, 1]
// CHECK: scf.yield %[[VAL_16]], %[[VAL_24]] : tensor<256x256xf32>, tensor<256x256x24xf32>
// CHECK: }
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%slice_op = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%loop = transform.structured.match ops{["scf.for"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%a, %b = transform.test.fuse_consumer %slice_op in (%loop) num_consumer_to_fuse = 1
: (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @multi_slice_fusion1(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?xf32>, %arg2 : tensor<?xf32>, %arg3 : index) -> tensor<?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%dim0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
%dim1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
%loop:2 = scf.forall (%iv0) = (%c0) to (%dim0) step (%arg3) shared_outs(%init0 = %arg1, %init1 = %arg2) -> (tensor<?xf32>, tensor<?xf32>) {
%tilesize = affine.min affine_map<(d0)[s0, s1] -> (s1, s0 - d0)>(%iv0)[%dim0, %arg3]
%arg0_slice = tensor.extract_slice %arg0[%iv0, 0] [%tilesize, %dim1] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%init0_slice = tensor.extract_slice %init0[%iv0] [%tilesize] [1] : tensor<?xf32> to tensor<?xf32>
%init1_slice = tensor.extract_slice %init1[%iv0] [%tilesize] [1] : tensor<?xf32> to tensor<?xf32>
%generic:2 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%arg0_slice : tensor<?x?xf32>) outs(%init0_slice, %init1_slice : tensor<?xf32>, tensor<?xf32>) {
^bb0(%b0 : f32, %b1 : f32, %b2 : f32):
%0 = arith.mulf %b0, %b1 : f32
%1 = arith.addf %b0, %b2 : f32
linalg.yield %0, %1 : f32, f32
} -> (tensor<?xf32>, tensor<?xf32>)
scf.forall.in_parallel {
tensor.parallel_insert_slice %generic#0 into %init0[%iv0] [%tilesize] [1] : tensor<?xf32> into tensor<?xf32>
tensor.parallel_insert_slice %generic#1 into %init1[%iv0] [%tilesize] [1] : tensor<?xf32> into tensor<?xf32>
}
}
%empty = tensor.empty(%dim0) : tensor<?xf32>
%result = linalg.generic {
indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>],
iterator_types = ["parallel"]}
ins(%loop#0, %loop#1 : tensor<?xf32>, tensor<?xf32>) outs(%empty : tensor<?xf32>) {
^bb0(%b0 : f32, %b1 : f32, %b2 : f32):
%0 = arith.addf %b0, %b1 : f32
linalg.yield %0 : f32
} -> tensor<?xf32>
return %result : tensor<?xf32>
}
// CHECK-LABEL: func @multi_slice_fusion1(
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?xf32>
// CHECK: %[[C0:.+]] = arith.constant 0
// CHECK: %[[DIM0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM0]])
// CHECK: %[[RESULT:.+]]:3 = scf.forall (%[[IV:.+]]) =
// CHECK-SAME: , %[[INIT:[a-zA-Z0-9]+]] = %[[EMPTY]])
// CHECK: %[[TILESIZE:.+]] = affine.min
// CHECK-DAG: %[[GENERIC:.+]]:2 = linalg.generic
// CHECK-DAG: %[[INIT_SLICE:.+]] = tensor.extract_slice %[[INIT]][%[[IV]]] [%[[TILESIZE]]]
// CHECK: %[[FUSED:.+]] = linalg.generic
// CHECK-SAME: ins(%[[GENERIC]]#0, %[[GENERIC]]#1 :
// CHECK: tensor.parallel_insert_slice %[[FUSED]] into %[[INIT]][%[[IV]]] [%[[TILESIZE]]]
// CHECK: return %[[RESULT]]#2
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%loop = transform.structured.match ops{["scf.forall"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%yield = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%yield0, %yield1 = transform.split_handle %yield : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
%a, %b = transform.test.fuse_consumer %yield0, %yield1 in (%loop)
: (!transform.any_op, !transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
// Check that when the given operand tiles are inconsistent, tiling fails.
func.func @multi_slice_fusion2(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?xf32>, %arg2 : tensor<?xf32>, %arg3 : index) -> tensor<?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%dim0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
%dim1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
%loop:2 = scf.forall (%iv0) = (%c0) to (%dim0) step (%arg3) shared_outs(%init0 = %arg1, %init1 = %arg2) -> (tensor<?xf32>, tensor<?xf32>) {
%tilesize = affine.min affine_map<(d0)[s0, s1] -> (s1, s0 - d0)>(%iv0)[%dim0, %arg3]
%arg0_slice = tensor.extract_slice %arg0[%iv0, 0] [%tilesize, %dim1] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%init0_slice = tensor.extract_slice %init0[%iv0] [%tilesize] [1] : tensor<?xf32> to tensor<?xf32>
%generic0 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%arg0_slice : tensor<?x?xf32>) outs(%init0_slice : tensor<?xf32>) {
^bb0(%b0 : f32, %b1 : f32):
%0 = arith.mulf %b0, %b1 : f32
linalg.yield %0 : f32
} -> tensor<?xf32>
%init1_slice = tensor.extract_slice %init1[%iv0] [%tilesize] [1] : tensor<?xf32> to tensor<?xf32>
%generic1 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%arg0_slice : tensor<?x?xf32>) outs(%init1_slice: tensor<?xf32>) {
^bb0(%b0 : f32, %b1 : f32):
%0 = arith.addf %b0, %b1 : f32
linalg.yield %0: f32
} -> tensor<?xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %generic0 into %init0[%iv0] [%tilesize] [1] : tensor<?xf32> into tensor<?xf32>
tensor.parallel_insert_slice %generic1 into %init1[%iv0] [%tilesize] [1] : tensor<?xf32> into tensor<?xf32>
}
}
%empty = tensor.empty(%dim0) : tensor<?xf32>
%result = linalg.generic {
indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>],
iterator_types = ["parallel"]}
ins(%loop#0, %loop#1 : tensor<?xf32>, tensor<?xf32>) outs(%empty : tensor<?xf32>) {
^bb0(%b0 : f32, %b1 : f32, %b2 : f32):
%0 = arith.addf %b0, %b1 : f32
linalg.yield %0 : f32
} -> tensor<?xf32>
return %result : tensor<?xf32>
}
// CHECK-LABEL: func @multi_slice_fusion2(
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?xf32>
// CHECK: %[[C0:.+]] = arith.constant 0
// CHECK: %[[DIM0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM0]])
// CHECK: %[[RESULT:.+]]:3 = scf.forall (%[[IV:.+]]) =
// CHECK-SAME: , %[[INIT:[a-zA-Z0-9]+]] = %[[EMPTY]])
// CHECK: %[[TILESIZE:.+]] = affine.min
// CHECK: %[[GENERIC0:.+]] = linalg.generic
// CHECK: %[[GENERIC1:.+]] = linalg.generic
// CHECK-DAG: %[[INIT_SLICE:.+]] = tensor.extract_slice %[[INIT]][%[[IV]]] [%[[TILESIZE]]]
// CHECK: %[[FUSED:.+]] = linalg.generic
// CHECK-SAME: ins(%[[GENERIC0]], %[[GENERIC1]] :
// CHECK: tensor.parallel_insert_slice %[[FUSED]] into %[[INIT]][%[[IV]]] [%[[TILESIZE]]]
// CHECK: return %[[RESULT]]#2
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%loop = transform.structured.match ops{["scf.forall"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%yield = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%yield0, %yield1 = transform.split_handle %yield : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
%a, %b = transform.test.fuse_consumer %yield0, %yield1 in (%loop)
: (!transform.any_op, !transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// -----
func.func @multi_slice_fusion_with_broadcast(%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?xf32>,
%arg3 : index, %arg4 : index) -> tensor<?x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%dim0 = tensor.dim %arg0, %c0 : tensor<?x?x?xf32>
%dim1 = tensor.dim %arg0, %c1 : tensor<?x?x?xf32>
%dim2 = tensor.dim %arg0, %c2 : tensor<?x?x?xf32>
%loop:2 = scf.forall (%iv0, %iv1) = (%c0, %c0) to (%dim0, %dim1) step (%arg3, %arg4)
shared_outs(%init0 = %arg1, %init1 = %arg2) -> (tensor<?x?xf32>, tensor<?xf32>) {
%tilesize0 = affine.min affine_map<(d0)[s0, s1] -> (s1, s0 - d0)>(%iv0)[%dim0, %arg3]
%tilesize1 = affine.min affine_map<(d0)[s0, s1] -> (s1, s0 - d0)>(%iv1)[%dim1, %arg4]
%arg0_slice = tensor.extract_slice %arg0[%iv0, %iv1, 0] [%tilesize0, %tilesize1, %dim2] [1, 1, 1]
: tensor<?x?x?xf32> to tensor<?x?x?xf32>
%init0_slice = tensor.extract_slice %init0[%iv0, %iv1] [%tilesize0, %tilesize1] [1, 1]
: tensor<?x?xf32> to tensor<?x?xf32>
%generic0 = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>],
iterator_types = ["parallel", "parallel", "reduction"]}
ins(%arg0_slice : tensor<?x?x?xf32>) outs(%init0_slice : tensor<?x?xf32>) {
^bb0(%b0 : f32, %b1 : f32):
%0 = arith.mulf %b0, %b1 : f32
linalg.yield %0 : f32
} -> tensor<?x?xf32>
%init1_slice = tensor.extract_slice %init1[%iv0] [%tilesize0] [1] : tensor<?xf32> to tensor<?xf32>
%generic1 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%generic0 : tensor<?x?xf32>) outs(%init1_slice: tensor<?xf32>) {
^bb0(%b0 : f32, %b1 : f32):
%0 = arith.addf %b0, %b1 : f32
linalg.yield %0: f32
} -> tensor<?xf32>
scf.forall.in_parallel {
tensor.parallel_insert_slice %generic0 into %init0[%iv0, %iv1] [%tilesize0, %tilesize1] [1, 1]
: tensor<?x?xf32> into tensor<?x?xf32>
tensor.parallel_insert_slice %generic1 into %init1[%iv0] [%tilesize0] [1] : tensor<?xf32> into tensor<?xf32>
}
}
%empty = tensor.empty(%dim0, %dim1) : tensor<?x?xf32>
%result = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]}
ins(%loop#0, %loop#1 : tensor<?x?xf32>, tensor<?xf32>) outs(%empty : tensor<?x?xf32>) {
^bb0(%b0 : f32, %b1 : f32, %b2 : f32):
%0 = arith.addf %b0, %b1 : f32
linalg.yield %0 : f32
} -> tensor<?x?xf32>
return %result : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%loop = transform.structured.match ops{["scf.forall"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%yield = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%yield0, %yield1 = transform.split_handle %yield : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
%a, %b = transform.test.fuse_consumer %yield0, %yield1 in (%loop)
: (!transform.any_op, !transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}
// CHECK-LABEL: func @multi_slice_fusion_with_broadcast(
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x?xf32>
// CHECK-DAG: %[[C0:.+]] = arith.constant 0
// CHECK-DAG: %[[C1:.+]] = arith.constant 1
// CHECK-DAG: %[[DIM0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK-DAG: %[[DIM1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM0]], %[[DIM1]])
// CHECK: %[[RESULT:.+]]:3 = scf.forall (%[[IV0:[a-zA-Z0-9]+]], %[[IV1:[a-zA-Z0-9]+]]) =
// CHECK-SAME: , %[[INIT:[a-zA-Z0-9]+]] = %[[EMPTY]])
// CHECK-DAG: %[[TILESIZE0:.+]] = affine.min {{.+}}(%[[IV0]])
// CHECK-DAG: %[[TILESIZE1:.+]] = affine.min {{.+}}(%[[IV1]])
// CHECK: %[[GENERIC0:.+]] = linalg.generic
// CHECK: %[[GENERIC1:.+]] = linalg.generic
// CHECK-DAG: %[[INIT_SLICE:.+]] = tensor.extract_slice %[[INIT]][%[[IV0]], %[[IV1]]] [%[[TILESIZE0]], %[[TILESIZE1]]]
// CHECK: %[[FUSED:.+]] = linalg.generic
// CHECK-SAME: ins(%[[GENERIC0]], %[[GENERIC1]] :
// CHECK: tensor.parallel_insert_slice %[[FUSED]] into %[[INIT]][%[[IV0]], %[[IV1]]] [%[[TILESIZE0]], %[[TILESIZE1]]]
// CHECK: return %[[RESULT]]#2
// -----
func.func @multi_slice_fusion_invalid(%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?x?xf32>,
%arg3 : index, %arg4 : index) -> tensor<?x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%dim0 = tensor.dim %arg0, %c0 : tensor<?x?x?xf32>
%dim1 = tensor.dim %arg0, %c1 : tensor<?x?x?xf32>
%dim2 = tensor.dim %arg0, %c2 : tensor<?x?x?xf32>
%loop:2 = scf.forall (%iv0, %iv1) = (%c0, %c0) to (%dim0, %dim1) step (%arg3, %arg4)
shared_outs(%init0 = %arg1, %init1 = %arg2) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%tilesize0 = affine.min affine_map<(d0)[s0, s1] -> (s1, s0 - d0)>(%iv0)[%dim0, %arg3]
%tilesize1 = affine.min affine_map<(d0)[s0, s1] -> (s1, s0 - d0)>(%iv1)[%dim1, %arg4]
%arg0_slice = tensor.extract_slice %arg0[%iv0, %iv1, 0] [%tilesize0, %tilesize1, %dim2] [1, 1, 1]
: tensor<?x?x?xf32> to tensor<?x?x?xf32>
%init0_slice = tensor.extract_slice %init0[%iv0, %iv1] [%tilesize0, %tilesize1] [1, 1]
: tensor<?x?xf32> to tensor<?x?xf32>
%generic0 = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>],
iterator_types = ["parallel", "parallel", "reduction"]}
ins(%arg0_slice : tensor<?x?x?xf32>) outs(%init0_slice : tensor<?x?xf32>) {
^bb0(%b0 : f32, %b1 : f32):
%0 = arith.mulf %b0, %b1 : f32
linalg.yield %0 : f32
} -> tensor<?x?xf32>
%init1_slice = tensor.extract_slice %init1[%iv0, %iv1] [%tilesize0, %tilesize1] [1, 1]
: tensor<?x?xf32> to tensor<?x?xf32>
%generic1 = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>],
iterator_types = ["parallel", "parallel", "reduction"]}
ins(%arg0_slice : tensor<?x?x?xf32>) outs(%init1_slice: tensor<?x?xf32>) {
^bb0(%b0 : f32, %b1 : f32):
%0 = arith.addf %b0, %b1 : f32
linalg.yield %0: f32
} -> tensor<?x?xf32>
scf.forall.in_parallel {
// expected-error @below {{failed to fuse consumer of slice}}
tensor.parallel_insert_slice %generic0 into %init0[%iv0, %iv1] [%tilesize0, %tilesize1] [1, 1]
: tensor<?x?xf32> into tensor<?x?xf32>
tensor.parallel_insert_slice %generic1 into %init1[%iv0, %iv1] [%tilesize0, %tilesize1] [1, 1]
: tensor<?x?xf32> into tensor<?x?xf32>
}
}
%empty = tensor.empty(%dim0, %dim1) : tensor<?x?xf32>
%result = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d1, d0)>, affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]}
ins(%loop#0, %loop#1 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%empty : tensor<?x?xf32>) {
^bb0(%b0 : f32, %b1 : f32, %b2 : f32):
%0 = arith.addf %b0, %b1 : f32
linalg.yield %0 : f32
} -> tensor<?x?xf32>
return %result : tensor<?x?xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
%loop = transform.structured.match ops{["scf.forall"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%yield = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
: (!transform.any_op) -> !transform.any_op
%yield0, %yield1 = transform.split_handle %yield : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
%a, %b = transform.test.fuse_consumer %yield0, %yield1 in (%loop)
: (!transform.any_op, !transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op)
transform.yield
}
}