Files
clang-p2996/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

739 lines
27 KiB
C++

//===- ShapeToStandard.cpp - conversion from Shape to Standard dialect ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ShapeToStandard/ShapeToStandard.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/STLExtras.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTSHAPETOSTANDARD
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::shape;
using namespace mlir::scf;
/// Conversion patterns.
namespace {
class AnyOpConversion : public OpConversionPattern<AnyOp> {
public:
using OpConversionPattern<AnyOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(AnyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
AnyOpConversion::matchAndRewrite(AnyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Replace `any` with its first operand.
// Any operand would be a valid substitution.
rewriter.replaceOp(op, {adaptor.getInputs().front()});
return success();
}
namespace {
template <typename SrcOpTy, typename DstOpTy>
class BinaryOpConversion : public OpConversionPattern<SrcOpTy> {
public:
using OpConversionPattern<SrcOpTy>::OpConversionPattern;
LogicalResult
matchAndRewrite(SrcOpTy op, typename SrcOpTy::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// For now, only error-free types are supported by this lowering.
if (isa<SizeType>(op.getType()))
return failure();
rewriter.replaceOpWithNewOp<DstOpTy>(op, adaptor.getLhs(),
adaptor.getRhs());
return success();
}
};
} // namespace
namespace {
struct BroadcastOpConverter : public OpConversionPattern<BroadcastOp> {
using OpConversionPattern<BroadcastOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(BroadcastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
// Get the resulting extent in a given dimension. This is computed with any
// number of extent tensors and shifted offsets into them.
Value getBroadcastedDim(ImplicitLocOpBuilder lb, ValueRange extentTensors,
ValueRange rankDiffs, Value outputDimension) {
Value one = lb.create<arith::ConstantIndexOp>(1);
Value broadcastedDim = one;
for (auto tup : llvm::zip(extentTensors, rankDiffs)) {
Value shape = std::get<0>(tup);
Value rankDiff = std::get<1>(tup);
Value outOfBounds = lb.create<arith::CmpIOp>(arith::CmpIPredicate::ult,
outputDimension, rankDiff);
Type indexTy = lb.getIndexType();
broadcastedDim =
lb.create<IfOp>(
outOfBounds,
[&](OpBuilder &b, Location loc) {
b.create<scf::YieldOp>(loc, broadcastedDim);
},
[&](OpBuilder &b, Location loc) {
// The broadcasting logic is:
// - if one extent (here we arbitrarily choose the
// extent from the greater-rank operand) is equal to 1,
// then take the extent from the other operand
// - otherwise, take the extent as-is.
// Note that this logic remains correct in the presence
// of dimensions of zero extent.
Value lesserRankOperandDimension = b.create<arith::SubIOp>(
loc, indexTy, outputDimension, rankDiff);
Value lesserRankOperandExtent = b.create<tensor::ExtractOp>(
loc, shape, ValueRange{lesserRankOperandDimension});
Value dimIsOne =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
lesserRankOperandExtent, one);
Value dim = b.create<arith::SelectOp>(
loc, dimIsOne, broadcastedDim, lesserRankOperandExtent);
b.create<scf::YieldOp>(loc, dim);
})
.getResult(0);
}
return broadcastedDim;
}
} // namespace
LogicalResult BroadcastOpConverter::matchAndRewrite(
BroadcastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands, not
// on shapes.
if (isa<ShapeType>(op.getType()))
return failure();
auto loc = op.getLoc();
ImplicitLocOpBuilder lb(loc, rewriter);
Value zero = lb.create<arith::ConstantIndexOp>(0);
Type indexTy = lb.getIndexType();
// Save all the ranks for bounds checking. Because this is a tensor
// representing the shape extents, the rank is the extent of the only
// dimension in the tensor.
SmallVector<Value> ranks, rankDiffs;
llvm::append_range(ranks, llvm::map_range(adaptor.getShapes(), [&](Value v) {
return lb.create<tensor::DimOp>(v, zero);
}));
// Find the maximum rank
Value maxRank = ranks.front();
for (Value v : llvm::drop_begin(ranks, 1)) {
Value rankIsGreater =
lb.create<arith::CmpIOp>(arith::CmpIPredicate::ugt, v, maxRank);
maxRank = lb.create<arith::SelectOp>(rankIsGreater, v, maxRank);
}
// Calculate the difference of ranks and the maximum rank for later offsets.
llvm::append_range(rankDiffs, llvm::map_range(ranks, [&](Value v) {
return lb.create<arith::SubIOp>(indexTy, maxRank, v);
}));
Value replacement = lb.create<tensor::GenerateOp>(
getExtentTensorType(lb.getContext()), ValueRange{maxRank},
[&](OpBuilder &b, Location loc, ValueRange args) {
Value broadcastedDim =
getBroadcastedDim(ImplicitLocOpBuilder(loc, b), adaptor.getShapes(),
rankDiffs, args[0]);
b.create<tensor::YieldOp>(loc, broadcastedDim);
});
if (replacement.getType() != op.getType())
replacement = lb.create<tensor::CastOp>(op.getType(), replacement);
rewriter.replaceOp(op, replacement);
return success();
}
namespace {
class ConstShapeOpConverter : public OpConversionPattern<ConstShapeOp> {
public:
using OpConversionPattern<ConstShapeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ConstShapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ConstShapeOpConverter::matchAndRewrite(
ConstShapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering supports only extent tensors, not `shape.shape`
// types.
if (isa<ShapeType>(op.getType()))
return failure();
auto loc = op.getLoc();
SmallVector<Value, 4> extentOperands;
for (auto extent : op.getShape()) {
extentOperands.push_back(
rewriter.create<arith::ConstantIndexOp>(loc, extent.getLimitedValue()));
}
Type resultTy =
RankedTensorType::get({op.getShape().size()}, rewriter.getIndexType());
Value tensor =
rewriter.create<tensor::FromElementsOp>(loc, resultTy, extentOperands);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultTy, tensor);
return success();
}
namespace {
class ConstSizeOpConversion : public OpConversionPattern<ConstSizeOp> {
public:
using OpConversionPattern<ConstSizeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ConstSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ConstSizeOpConversion::matchAndRewrite(
ConstSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(
op, op.getValue().getSExtValue());
return success();
}
namespace {
struct IsBroadcastableOpConverter
: public OpConversionPattern<IsBroadcastableOp> {
using OpConversionPattern<IsBroadcastableOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(IsBroadcastableOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult IsBroadcastableOpConverter::matchAndRewrite(
IsBroadcastableOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands, not
// on shapes.
if (!llvm::all_of(op.getShapes(),
[](Value v) { return !isa<ShapeType>(v.getType()); }))
return failure();
auto loc = op.getLoc();
ImplicitLocOpBuilder lb(loc, rewriter);
Value zero = lb.create<arith::ConstantIndexOp>(0);
Value one = lb.create<arith::ConstantIndexOp>(1);
Type indexTy = lb.getIndexType();
// Save all the ranks for bounds checking. Because this is a tensor
// representing the shape extents, the rank is the extent of the only
// dimension in the tensor.
SmallVector<Value> ranks, rankDiffs;
llvm::append_range(ranks, llvm::map_range(adaptor.getShapes(), [&](Value v) {
return lb.create<tensor::DimOp>(v, zero);
}));
// Find the maximum rank
Value maxRank = ranks.front();
for (Value v : llvm::drop_begin(ranks, 1)) {
Value rankIsGreater =
lb.create<arith::CmpIOp>(arith::CmpIPredicate::ugt, v, maxRank);
maxRank = lb.create<arith::SelectOp>(rankIsGreater, v, maxRank);
}
// Calculate the difference of ranks and the maximum rank for later offsets.
llvm::append_range(rankDiffs, llvm::map_range(ranks, [&](Value v) {
return lb.create<arith::SubIOp>(indexTy, maxRank, v);
}));
Type i1Ty = rewriter.getI1Type();
Value trueVal =
rewriter.create<arith::ConstantOp>(loc, i1Ty, rewriter.getBoolAttr(true));
auto reduceResult = lb.create<ForOp>(
loc, zero, maxRank, one, ValueRange{trueVal},
[&](OpBuilder &b, Location loc, Value iv, ValueRange iterArgs) {
// Find a non-1 dim, if it exists. Note that the first part of this
// could reuse the Broadcast lowering entirely, but we redo the work
// here to make optimizations easier between the two loops.
Value broadcastedDim = getBroadcastedDim(
ImplicitLocOpBuilder(loc, b), adaptor.getShapes(), rankDiffs, iv);
Value broadcastable = iterArgs[0];
for (auto tup : llvm::zip(adaptor.getShapes(), rankDiffs)) {
Value shape, rankDiff;
std::tie(shape, rankDiff) = tup;
Value outOfBounds = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ult, iv, rankDiff);
broadcastable =
b.create<IfOp>(
loc, outOfBounds,
[&](OpBuilder &b, Location loc) {
// Non existent dimensions are always broadcastable
b.create<scf::YieldOp>(loc, broadcastable);
},
[&](OpBuilder &b, Location loc) {
// Every value needs to be either 1, or the same non-1
// value to be broadcastable in this dim.
Value operandDimension =
b.create<arith::SubIOp>(loc, indexTy, iv, rankDiff);
Value dimensionExtent = b.create<tensor::ExtractOp>(
loc, shape, ValueRange{operandDimension});
Value equalOne = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, dimensionExtent, one);
Value equalBroadcasted = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, dimensionExtent,
broadcastedDim);
Value result = b.create<arith::AndIOp>(
loc, broadcastable,
b.create<arith::OrIOp>(loc, equalOne,
equalBroadcasted));
b.create<scf::YieldOp>(loc, result);
})
.getResult(0);
}
b.create<scf::YieldOp>(loc, broadcastable);
});
rewriter.replaceOp(op, reduceResult.getResults().front());
return success();
}
namespace {
class DimOpConverter : public OpConversionPattern<DimOp> {
using OpConversionPattern<DimOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
DimOpConverter::matchAndRewrite(DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Lower to dim(X, i) to get_extent(shape_of(X), i) and rely on further
// lowerings. This can be further optimized if needed to avoid intermediate
// steps.
auto shapeOf = rewriter.create<shape::ShapeOfOp>(op.getLoc(), op.getValue());
rewriter.replaceOpWithNewOp<shape::GetExtentOp>(op, op.getType(), shapeOf,
op.getIndex());
return success();
}
namespace {
class GetExtentOpConverter : public OpConversionPattern<GetExtentOp> {
using OpConversionPattern<GetExtentOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(GetExtentOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult GetExtentOpConverter::matchAndRewrite(
GetExtentOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, only error-free types are supported by this lowering.
if (isa<SizeType>(op.getType()))
return failure();
// Derive shape extent directly from shape origin if possible. This
// circumvents the necessity to materialize the shape in memory.
if (auto shapeOfOp = op.getShape().getDefiningOp<ShapeOfOp>()) {
if (isa<ShapedType>(shapeOfOp.getArg().getType())) {
rewriter.replaceOpWithNewOp<tensor::DimOp>(op, shapeOfOp.getArg(),
adaptor.getDim());
return success();
}
}
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(op, rewriter.getIndexType(),
adaptor.getShape(),
ValueRange{adaptor.getDim()});
return success();
}
namespace {
class RankOpConverter : public OpConversionPattern<shape::RankOp> {
public:
using OpConversionPattern<shape::RankOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(shape::RankOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
RankOpConverter::matchAndRewrite(shape::RankOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering supports only error-free types.
if (isa<SizeType>(op.getType()))
return failure();
rewriter.replaceOpWithNewOp<tensor::DimOp>(op, adaptor.getShape(), 0);
return success();
}
namespace {
/// Converts `shape.reduce` to `scf.for`.
struct ReduceOpConverter : public OpConversionPattern<shape::ReduceOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(shape::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
ReduceOpConverter::matchAndRewrite(shape::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands.
if (isa<ShapeType>(op.getShape().getType()))
return failure();
auto loc = op.getLoc();
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
Type indexTy = rewriter.getIndexType();
Value rank =
rewriter.create<tensor::DimOp>(loc, indexTy, adaptor.getShape(), zero);
auto loop = rewriter.create<scf::ForOp>(
loc, zero, rank, one, op.getInitVals(),
[&](OpBuilder &b, Location loc, Value iv, ValueRange args) {
Value extent = b.create<tensor::ExtractOp>(loc, adaptor.getShape(), iv);
SmallVector<Value, 2> mappedValues{iv, extent};
mappedValues.append(args.begin(), args.end());
IRMapping mapping;
Block *reduceBody = op.getBody();
mapping.map(reduceBody->getArguments(), mappedValues);
for (auto &nested : reduceBody->without_terminator())
b.clone(nested, mapping);
SmallVector<Value, 2> mappedResults;
for (auto result : reduceBody->getTerminator()->getOperands())
mappedResults.push_back(mapping.lookup(result));
b.create<scf::YieldOp>(loc, mappedResults);
});
rewriter.replaceOp(op, loop.getResults());
return success();
}
namespace {
/// Converts `shape.shape_eq` to an `scf.for` loop. For now, the lowering is
/// only defined on `tensor<?xindex>` operands. The test for equality first
/// compares their size and, if equal, checks every extent for equality.
///
/// Example:
///
/// %result = shape.shape_eq %a, %b : tensor<?xindex>, tensor<?xindex>
///
/// becomes
///
/// %c0 = arith.constant 0 : index
/// %0 = dim %arg0, %c0 : tensor<?xindex>
/// %1 = dim %arg1, %c0 : tensor<?xindex>
/// %2 = arith.cmpi "eq", %0, %1 : index
/// %result = scf.if %2 -> (i1) {
/// %c1 = arith.constant 1 : index
/// %true = arith.constant true
/// %4 = scf.for %arg2 = %c0 to %0 step %c1 iter_args(%arg3 = %true) -> (i1) {
/// %5 = tensor.extract %arg0[%arg2] : tensor<?xindex>
/// %6 = tensor.extract %arg1[%arg2] : tensor<?xindex>
/// %7 = arith.cmpi "eq", %5, %6 : index
/// %8 = arith.andi %arg3, %7 : i1
/// scf.yield %8 : i1
/// }
/// scf.yield %4 : i1
/// } else {
/// %false = arith.constant false
/// scf.yield %false : i1
/// }
///
struct ShapeEqOpConverter : public OpConversionPattern<ShapeEqOp> {
using OpConversionPattern<ShapeEqOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ShapeEqOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
ShapeEqOpConverter::matchAndRewrite(ShapeEqOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (!llvm::all_of(op.getShapes(),
[](Value v) { return !isa<ShapeType>(v.getType()); }))
return failure();
Type i1Ty = rewriter.getI1Type();
if (op.getShapes().size() <= 1) {
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, i1Ty,
rewriter.getBoolAttr(true));
return success();
}
auto loc = op.getLoc();
Type indexTy = rewriter.getIndexType();
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value firstShape = adaptor.getShapes().front();
Value firstRank =
rewriter.create<tensor::DimOp>(loc, indexTy, firstShape, zero);
Value result = nullptr;
// Generate a linear sequence of compares, all with firstShape as lhs.
for (Value shape : adaptor.getShapes().drop_front(1)) {
Value rank = rewriter.create<tensor::DimOp>(loc, indexTy, shape, zero);
Value eqRank = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
firstRank, rank);
auto same = rewriter.create<IfOp>(
loc, eqRank,
[&](OpBuilder &b, Location loc) {
Value one = b.create<arith::ConstantIndexOp>(loc, 1);
Value init =
b.create<arith::ConstantOp>(loc, i1Ty, b.getBoolAttr(true));
auto loop = b.create<scf::ForOp>(
loc, zero, firstRank, one, ValueRange{init},
[&](OpBuilder &b, Location nestedLoc, Value iv, ValueRange args) {
Value conj = args[0];
Value lhsExtent =
b.create<tensor::ExtractOp>(loc, firstShape, iv);
Value rhsExtent = b.create<tensor::ExtractOp>(loc, shape, iv);
Value eqExtent = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, lhsExtent, rhsExtent);
Value conjNext = b.create<arith::AndIOp>(loc, conj, eqExtent);
b.create<scf::YieldOp>(loc, ValueRange({conjNext}));
});
b.create<scf::YieldOp>(loc, loop.getResults());
},
[&](OpBuilder &b, Location loc) {
Value result =
b.create<arith::ConstantOp>(loc, i1Ty, b.getBoolAttr(false));
b.create<scf::YieldOp>(loc, result);
});
result = !result ? same.getResult(0)
: rewriter.create<arith::AndIOp>(loc, result,
same.getResult(0));
}
rewriter.replaceOp(op, result);
return success();
}
namespace {
class ShapeOfOpConversion : public OpConversionPattern<ShapeOfOp> {
public:
using OpConversionPattern<ShapeOfOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ShapeOfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ShapeOfOpConversion::matchAndRewrite(
ShapeOfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, only error-free types are supported by this lowering.
if (isa<ShapeType>(op.getType()))
return failure();
// For ranked tensor arguments, lower to `tensor.from_elements`.
auto loc = op.getLoc();
Value tensor = adaptor.getArg();
Type tensorTy = tensor.getType();
if (isa<RankedTensorType>(tensorTy)) {
// Build values for individual extents.
SmallVector<Value, 8> extentValues;
RankedTensorType rankedTensorTy = cast<RankedTensorType>(tensorTy);
int64_t rank = rankedTensorTy.getRank();
for (int64_t i = 0; i < rank; i++) {
if (rankedTensorTy.isDynamicDim(i)) {
Value extent = rewriter.create<tensor::DimOp>(loc, tensor, i);
extentValues.push_back(extent);
} else {
Value extent = rewriter.create<arith::ConstantIndexOp>(
loc, rankedTensorTy.getDimSize(i));
extentValues.push_back(extent);
}
}
// Materialize extent tensor.
Value staticExtentTensor = rewriter.create<tensor::FromElementsOp>(
loc, RankedTensorType::get({rank}, rewriter.getIndexType()),
extentValues);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
staticExtentTensor);
return success();
}
// Lower to `tensor.generate` otherwise.
auto *ctx = rewriter.getContext();
Value rank = rewriter.create<tensor::RankOp>(loc, tensor);
rewriter.replaceOpWithNewOp<tensor::GenerateOp>(
op, getExtentTensorType(ctx), ValueRange{rank},
[&](OpBuilder &b, Location loc, ValueRange args) {
Value dim = args.front();
Value extent = b.create<tensor::DimOp>(loc, tensor, dim);
b.create<tensor::YieldOp>(loc, extent);
});
return success();
}
namespace {
class SplitAtOpConversion : public OpConversionPattern<SplitAtOp> {
public:
using OpConversionPattern<SplitAtOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(SplitAtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult SplitAtOpConversion::matchAndRewrite(
SplitAtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Error conditions are not implemented, only lower if all operands and
// results are extent tensors.
if (llvm::any_of(ValueRange{op.getOperand(), op.getHead(), op.getTail()},
[](Value v) { return isa<ShapeType>(v.getType()); }))
return failure();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value zero = b.create<arith::ConstantIndexOp>(0);
Value rank = b.create<tensor::DimOp>(adaptor.getOperand(), zero);
// index < 0 ? index + rank : index
Value originalIndex = adaptor.getIndex();
Value add = b.create<arith::AddIOp>(originalIndex, rank);
Value indexIsNegative =
b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, originalIndex, zero);
Value index = b.create<arith::SelectOp>(indexIsNegative, add, originalIndex);
Value one = b.create<arith::ConstantIndexOp>(1);
Value head =
b.create<tensor::ExtractSliceOp>(adaptor.getOperand(), zero, index, one);
Value tailSize = b.create<arith::SubIOp>(rank, index);
Value tail = b.create<tensor::ExtractSliceOp>(adaptor.getOperand(), index,
tailSize, one);
rewriter.replaceOp(op, {head, tail});
return success();
}
namespace {
class ToExtentTensorOpConversion
: public OpConversionPattern<ToExtentTensorOp> {
public:
using OpConversionPattern<ToExtentTensorOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToExtentTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!isa<RankedTensorType>(adaptor.getInput().getType()))
return rewriter.notifyMatchFailure(op, "input needs to be a tensor");
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
adaptor.getInput());
return success();
}
};
} // namespace
namespace {
/// Import the Shape Ops to Std Patterns.
#include "ShapeToStandard.cpp.inc"
} // namespace
namespace {
/// Conversion pass.
class ConvertShapeToStandardPass
: public impl::ConvertShapeToStandardBase<ConvertShapeToStandardPass> {
void runOnOperation() override;
};
} // namespace
void ConvertShapeToStandardPass::runOnOperation() {
// Setup target legality.
MLIRContext &ctx = getContext();
ConversionTarget target(ctx);
target.addLegalDialect<arith::ArithDialect, SCFDialect,
tensor::TensorDialect>();
target.addLegalOp<CstrRequireOp, func::FuncOp, ModuleOp>();
// Setup conversion patterns.
RewritePatternSet patterns(&ctx);
populateShapeToStandardConversionPatterns(patterns);
// Apply conversion.
auto module = getOperation();
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
void mlir::populateShapeToStandardConversionPatterns(
RewritePatternSet &patterns) {
// clang-format off
populateWithGenerated(patterns);
patterns.add<
AnyOpConversion,
BinaryOpConversion<AddOp, arith::AddIOp>,
BinaryOpConversion<MulOp, arith::MulIOp>,
BroadcastOpConverter,
ConstShapeOpConverter,
ConstSizeOpConversion,
DimOpConverter,
IsBroadcastableOpConverter,
GetExtentOpConverter,
RankOpConverter,
ReduceOpConverter,
ShapeEqOpConverter,
ShapeOfOpConversion,
SplitAtOpConversion,
ToExtentTensorOpConversion>(patterns.getContext());
// clang-format on
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertShapeToStandardPass() {
return std::make_unique<ConvertShapeToStandardPass>();
}