This is part of the RFC for a better fold API: https://discourse.llvm.org/t/rfc-a-better-fold-api-using-more-generic-adaptors/67374 This patch implements the generation of generic adaptors through TableGen. These are essentially a generalization of Adaptors, as implemented previously, but instead of indexing into a `mlir::ValueRange`, they may index into any container, regardless of the element type. This allows the use of the convenient getter methods of Adaptors to be reused on ranges that are the result of some kind of mapping functions of an ops operands. In the case of the fold API in the RFC, this would be `ArrayRef<Attribute>`, which is a mapping of the operands to their possibly-constant values. Implementation wise, some special care was taken to not cause a compile time regression, nor to break any kind of source compatibility. For that purpose, the current adaptor class was split into three: * A generic adaptor base class, within the detail namespace as it is an implementation detail, which implements all APIs independent of the range type used for the operands. This is all the attribute and region related code. Since it is not templated, its implementation does not have to be inline and can be put into the cpp source file * The actual generic adaptor, which has a template parameter for the range that should be indexed into for retrieving operands. It implements all the getters for operands, as they are dependent on the range type. It publicly inherits from the generic adaptor base class * A class named as adaptors have been named so far, inheriting from the generic adaptor class with `mlir::ValueRange` as range to index into. It implements the rest of the API, specific to `mlir::ValueRange` adaptors, which have previously been part of the adaptor. This boils down to a constructor from the Op type as well as the verify function. The last class having the exact same API surface and name as Adaptors did previously leads to full source compatibility. Differential Revision: https://reviews.llvm.org/D140660
748 lines
26 KiB
C++
748 lines
26 KiB
C++
//===- Operator.cpp - Operator class --------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Operator wrapper to simplify using TableGen Record defining a MLIR Op.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/TableGen/Operator.h"
|
|
#include "mlir/TableGen/Predicate.h"
|
|
#include "mlir/TableGen/Trait.h"
|
|
#include "mlir/TableGen/Type.h"
|
|
#include "llvm/ADT/EquivalenceClasses.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
|
|
#define DEBUG_TYPE "mlir-tblgen-operator"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tblgen;
|
|
|
|
using llvm::DagInit;
|
|
using llvm::DefInit;
|
|
using llvm::Record;
|
|
|
|
Operator::Operator(const llvm::Record &def)
|
|
: dialect(def.getValueAsDef("opDialect")), def(def) {
|
|
// The first `_` in the op's TableGen def name is treated as separating the
|
|
// dialect prefix and the op class name. The dialect prefix will be ignored if
|
|
// not empty. Otherwise, if def name starts with a `_`, the `_` is considered
|
|
// as part of the class name.
|
|
StringRef prefix;
|
|
std::tie(prefix, cppClassName) = def.getName().split('_');
|
|
if (prefix.empty()) {
|
|
// Class name with a leading underscore and without dialect prefix
|
|
cppClassName = def.getName();
|
|
} else if (cppClassName.empty()) {
|
|
// Class name without dialect prefix
|
|
cppClassName = prefix;
|
|
}
|
|
|
|
cppNamespace = def.getValueAsString("cppNamespace");
|
|
|
|
populateOpStructure();
|
|
assertInvariants();
|
|
}
|
|
|
|
std::string Operator::getOperationName() const {
|
|
auto prefix = dialect.getName();
|
|
auto opName = def.getValueAsString("opName");
|
|
if (prefix.empty())
|
|
return std::string(opName);
|
|
return std::string(llvm::formatv("{0}.{1}", prefix, opName));
|
|
}
|
|
|
|
std::string Operator::getAdaptorName() const {
|
|
return std::string(llvm::formatv("{0}Adaptor", getCppClassName()));
|
|
}
|
|
|
|
std::string Operator::getGenericAdaptorName() const {
|
|
return std::string(llvm::formatv("{0}GenericAdaptor", getCppClassName()));
|
|
}
|
|
|
|
/// Assert the invariants of accessors generated for the given name.
|
|
static void assertAccessorInvariants(const Operator &op, StringRef name) {
|
|
std::string accessorName =
|
|
convertToCamelFromSnakeCase(name, /*capitalizeFirst=*/true);
|
|
|
|
// Functor used to detect when an accessor will cause an overlap with an
|
|
// operation API.
|
|
//
|
|
// There are a little bit more invasive checks possible for cases where not
|
|
// all ops have the trait that would cause overlap. For many cases here,
|
|
// renaming would be better (e.g., we can only guard in limited manner
|
|
// against methods from traits and interfaces here, so avoiding these in op
|
|
// definition is safer).
|
|
auto nameOverlapsWithOpAPI = [&](StringRef newName) {
|
|
if (newName == "AttributeNames" || newName == "Attributes" ||
|
|
newName == "Operation")
|
|
return true;
|
|
if (newName == "Operands")
|
|
return op.getNumOperands() != 1 || op.getNumVariableLengthOperands() != 1;
|
|
if (newName == "Regions")
|
|
return op.getNumRegions() != 1 || op.getNumVariadicRegions() != 1;
|
|
if (newName == "Type")
|
|
return op.getNumResults() != 1;
|
|
return false;
|
|
};
|
|
if (nameOverlapsWithOpAPI(accessorName)) {
|
|
// This error could be avoided in situations where the final function is
|
|
// identical, but preferably the op definition should avoid using generic
|
|
// names.
|
|
PrintFatalError(op.getLoc(), "generated accessor for `" + name +
|
|
"` overlaps with a default one; please "
|
|
"rename to avoid overlap");
|
|
}
|
|
}
|
|
|
|
void Operator::assertInvariants() const {
|
|
// Check that the name of arguments/results/regions/successors don't overlap.
|
|
DenseMap<StringRef, StringRef> existingNames;
|
|
auto checkName = [&](StringRef name, StringRef entity) {
|
|
if (name.empty())
|
|
return;
|
|
auto insertion = existingNames.insert({name, entity});
|
|
if (insertion.second) {
|
|
// Assert invariants for accessors generated for this name.
|
|
assertAccessorInvariants(*this, name);
|
|
return;
|
|
}
|
|
if (entity == insertion.first->second)
|
|
PrintFatalError(getLoc(), "op has a conflict with two " + entity +
|
|
" having the same name '" + name + "'");
|
|
PrintFatalError(getLoc(), "op has a conflict with " +
|
|
insertion.first->second + " and " + entity +
|
|
" both having an entry with the name '" +
|
|
name + "'");
|
|
};
|
|
// Check operands amongst themselves.
|
|
for (int i : llvm::seq<int>(0, getNumOperands()))
|
|
checkName(getOperand(i).name, "operands");
|
|
|
|
// Check results amongst themselves and against operands.
|
|
for (int i : llvm::seq<int>(0, getNumResults()))
|
|
checkName(getResult(i).name, "results");
|
|
|
|
// Check regions amongst themselves and against operands and results.
|
|
for (int i : llvm::seq<int>(0, getNumRegions()))
|
|
checkName(getRegion(i).name, "regions");
|
|
|
|
// Check successors amongst themselves and against operands, results, and
|
|
// regions.
|
|
for (int i : llvm::seq<int>(0, getNumSuccessors()))
|
|
checkName(getSuccessor(i).name, "successors");
|
|
}
|
|
|
|
StringRef Operator::getDialectName() const { return dialect.getName(); }
|
|
|
|
StringRef Operator::getCppClassName() const { return cppClassName; }
|
|
|
|
std::string Operator::getQualCppClassName() const {
|
|
if (cppNamespace.empty())
|
|
return std::string(cppClassName);
|
|
return std::string(llvm::formatv("{0}::{1}", cppNamespace, cppClassName));
|
|
}
|
|
|
|
StringRef Operator::getCppNamespace() const { return cppNamespace; }
|
|
|
|
int Operator::getNumResults() const {
|
|
DagInit *results = def.getValueAsDag("results");
|
|
return results->getNumArgs();
|
|
}
|
|
|
|
StringRef Operator::getExtraClassDeclaration() const {
|
|
constexpr auto attr = "extraClassDeclaration";
|
|
if (def.isValueUnset(attr))
|
|
return {};
|
|
return def.getValueAsString(attr);
|
|
}
|
|
|
|
StringRef Operator::getExtraClassDefinition() const {
|
|
constexpr auto attr = "extraClassDefinition";
|
|
if (def.isValueUnset(attr))
|
|
return {};
|
|
return def.getValueAsString(attr);
|
|
}
|
|
|
|
const llvm::Record &Operator::getDef() const { return def; }
|
|
|
|
bool Operator::skipDefaultBuilders() const {
|
|
return def.getValueAsBit("skipDefaultBuilders");
|
|
}
|
|
|
|
auto Operator::result_begin() const -> const_value_iterator {
|
|
return results.begin();
|
|
}
|
|
|
|
auto Operator::result_end() const -> const_value_iterator {
|
|
return results.end();
|
|
}
|
|
|
|
auto Operator::getResults() const -> const_value_range {
|
|
return {result_begin(), result_end()};
|
|
}
|
|
|
|
TypeConstraint Operator::getResultTypeConstraint(int index) const {
|
|
DagInit *results = def.getValueAsDag("results");
|
|
return TypeConstraint(cast<DefInit>(results->getArg(index)));
|
|
}
|
|
|
|
StringRef Operator::getResultName(int index) const {
|
|
DagInit *results = def.getValueAsDag("results");
|
|
return results->getArgNameStr(index);
|
|
}
|
|
|
|
auto Operator::getResultDecorators(int index) const -> var_decorator_range {
|
|
Record *result =
|
|
cast<DefInit>(def.getValueAsDag("results")->getArg(index))->getDef();
|
|
if (!result->isSubClassOf("OpVariable"))
|
|
return var_decorator_range(nullptr, nullptr);
|
|
return *result->getValueAsListInit("decorators");
|
|
}
|
|
|
|
unsigned Operator::getNumVariableLengthResults() const {
|
|
return llvm::count_if(results, [](const NamedTypeConstraint &c) {
|
|
return c.constraint.isVariableLength();
|
|
});
|
|
}
|
|
|
|
unsigned Operator::getNumVariableLengthOperands() const {
|
|
return llvm::count_if(operands, [](const NamedTypeConstraint &c) {
|
|
return c.constraint.isVariableLength();
|
|
});
|
|
}
|
|
|
|
bool Operator::hasSingleVariadicArg() const {
|
|
return getNumArgs() == 1 && getArg(0).is<NamedTypeConstraint *>() &&
|
|
getOperand(0).isVariadic();
|
|
}
|
|
|
|
Operator::arg_iterator Operator::arg_begin() const { return arguments.begin(); }
|
|
|
|
Operator::arg_iterator Operator::arg_end() const { return arguments.end(); }
|
|
|
|
Operator::arg_range Operator::getArgs() const {
|
|
return {arg_begin(), arg_end()};
|
|
}
|
|
|
|
StringRef Operator::getArgName(int index) const {
|
|
DagInit *argumentValues = def.getValueAsDag("arguments");
|
|
return argumentValues->getArgNameStr(index);
|
|
}
|
|
|
|
auto Operator::getArgDecorators(int index) const -> var_decorator_range {
|
|
Record *arg =
|
|
cast<DefInit>(def.getValueAsDag("arguments")->getArg(index))->getDef();
|
|
if (!arg->isSubClassOf("OpVariable"))
|
|
return var_decorator_range(nullptr, nullptr);
|
|
return *arg->getValueAsListInit("decorators");
|
|
}
|
|
|
|
const Trait *Operator::getTrait(StringRef trait) const {
|
|
for (const auto &t : traits) {
|
|
if (const auto *traitDef = dyn_cast<NativeTrait>(&t)) {
|
|
if (traitDef->getFullyQualifiedTraitName() == trait)
|
|
return traitDef;
|
|
} else if (const auto *traitDef = dyn_cast<InternalTrait>(&t)) {
|
|
if (traitDef->getFullyQualifiedTraitName() == trait)
|
|
return traitDef;
|
|
} else if (const auto *traitDef = dyn_cast<InterfaceTrait>(&t)) {
|
|
if (traitDef->getFullyQualifiedTraitName() == trait)
|
|
return traitDef;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
auto Operator::region_begin() const -> const_region_iterator {
|
|
return regions.begin();
|
|
}
|
|
auto Operator::region_end() const -> const_region_iterator {
|
|
return regions.end();
|
|
}
|
|
auto Operator::getRegions() const
|
|
-> llvm::iterator_range<const_region_iterator> {
|
|
return {region_begin(), region_end()};
|
|
}
|
|
|
|
unsigned Operator::getNumRegions() const { return regions.size(); }
|
|
|
|
const NamedRegion &Operator::getRegion(unsigned index) const {
|
|
return regions[index];
|
|
}
|
|
|
|
unsigned Operator::getNumVariadicRegions() const {
|
|
return llvm::count_if(regions,
|
|
[](const NamedRegion &c) { return c.isVariadic(); });
|
|
}
|
|
|
|
auto Operator::successor_begin() const -> const_successor_iterator {
|
|
return successors.begin();
|
|
}
|
|
auto Operator::successor_end() const -> const_successor_iterator {
|
|
return successors.end();
|
|
}
|
|
auto Operator::getSuccessors() const
|
|
-> llvm::iterator_range<const_successor_iterator> {
|
|
return {successor_begin(), successor_end()};
|
|
}
|
|
|
|
unsigned Operator::getNumSuccessors() const { return successors.size(); }
|
|
|
|
const NamedSuccessor &Operator::getSuccessor(unsigned index) const {
|
|
return successors[index];
|
|
}
|
|
|
|
unsigned Operator::getNumVariadicSuccessors() const {
|
|
return llvm::count_if(successors,
|
|
[](const NamedSuccessor &c) { return c.isVariadic(); });
|
|
}
|
|
|
|
auto Operator::trait_begin() const -> const_trait_iterator {
|
|
return traits.begin();
|
|
}
|
|
auto Operator::trait_end() const -> const_trait_iterator {
|
|
return traits.end();
|
|
}
|
|
auto Operator::getTraits() const -> llvm::iterator_range<const_trait_iterator> {
|
|
return {trait_begin(), trait_end()};
|
|
}
|
|
|
|
auto Operator::attribute_begin() const -> attribute_iterator {
|
|
return attributes.begin();
|
|
}
|
|
auto Operator::attribute_end() const -> attribute_iterator {
|
|
return attributes.end();
|
|
}
|
|
auto Operator::getAttributes() const
|
|
-> llvm::iterator_range<attribute_iterator> {
|
|
return {attribute_begin(), attribute_end()};
|
|
}
|
|
|
|
auto Operator::operand_begin() const -> const_value_iterator {
|
|
return operands.begin();
|
|
}
|
|
auto Operator::operand_end() const -> const_value_iterator {
|
|
return operands.end();
|
|
}
|
|
auto Operator::getOperands() const -> const_value_range {
|
|
return {operand_begin(), operand_end()};
|
|
}
|
|
|
|
auto Operator::getArg(int index) const -> Argument { return arguments[index]; }
|
|
|
|
// Mapping from result index to combined argument and result index. Arguments
|
|
// are indexed to match getArg index, while the result indexes are mapped to
|
|
// avoid overlap.
|
|
static int resultIndex(int i) { return -1 - i; }
|
|
|
|
bool Operator::isVariadic() const {
|
|
return any_of(llvm::concat<const NamedTypeConstraint>(operands, results),
|
|
[](const NamedTypeConstraint &op) { return op.isVariadic(); });
|
|
}
|
|
|
|
void Operator::populateTypeInferenceInfo(
|
|
const llvm::StringMap<int> &argumentsAndResultsIndex) {
|
|
// If the type inference op interface is not registered, then do not attempt
|
|
// to determine if the result types an be inferred.
|
|
auto &recordKeeper = def.getRecords();
|
|
auto *inferTrait = recordKeeper.getDef(inferTypeOpInterface);
|
|
allResultsHaveKnownTypes = false;
|
|
if (!inferTrait)
|
|
return;
|
|
|
|
// If there are no results, the skip this else the build method generated
|
|
// overlaps with another autogenerated builder.
|
|
if (getNumResults() == 0)
|
|
return;
|
|
|
|
// Skip ops with variadic or optional results.
|
|
if (getNumVariableLengthResults() > 0)
|
|
return;
|
|
|
|
// Skip cases currently being custom generated.
|
|
// TODO: Remove special cases.
|
|
if (getTrait("::mlir::OpTrait::SameOperandsAndResultType")) {
|
|
// Check for a non-variable length operand to use as the type anchor.
|
|
auto *operandI = llvm::find_if(arguments, [](const Argument &arg) {
|
|
NamedTypeConstraint *operand = arg.dyn_cast<NamedTypeConstraint *>();
|
|
return operand && !operand->isVariableLength();
|
|
});
|
|
if (operandI == arguments.end())
|
|
return;
|
|
|
|
// Map each of the result types to the anchor operation.
|
|
int operandIdx = operandI - arguments.begin();
|
|
resultTypeMapping.resize(getNumResults());
|
|
for (int i = 0; i < getNumResults(); ++i)
|
|
resultTypeMapping[i].emplace_back(operandIdx);
|
|
|
|
allResultsHaveKnownTypes = true;
|
|
traits.push_back(Trait::create(inferTrait->getDefInit()));
|
|
return;
|
|
}
|
|
|
|
// We create equivalence classes of argument/result types where arguments
|
|
// and results are mapped into the same index space and indices corresponding
|
|
// to the same type are in the same equivalence class.
|
|
llvm::EquivalenceClasses<int> ecs;
|
|
resultTypeMapping.resize(getNumResults());
|
|
// Captures the argument whose type matches a given result type. Preference
|
|
// towards capturing operands first before attributes.
|
|
auto captureMapping = [&](int i) {
|
|
bool found = false;
|
|
ecs.insert(resultIndex(i));
|
|
auto mi = ecs.findLeader(resultIndex(i));
|
|
for (auto me = ecs.member_end(); mi != me; ++mi) {
|
|
if (*mi < 0) {
|
|
auto tc = getResultTypeConstraint(i);
|
|
if (tc.getBuilderCall()) {
|
|
resultTypeMapping[i].emplace_back(tc);
|
|
found = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
resultTypeMapping[i].emplace_back(*mi);
|
|
found = true;
|
|
}
|
|
return found;
|
|
};
|
|
|
|
for (const Trait &trait : traits) {
|
|
const llvm::Record &def = trait.getDef();
|
|
// If the infer type op interface was manually added, then treat it as
|
|
// intention that the op needs special handling.
|
|
// TODO: Reconsider whether to always generate, this is more conservative
|
|
// and keeps existing behavior so starting that way for now.
|
|
if (def.isSubClassOf(
|
|
llvm::formatv("{0}::Trait", inferTypeOpInterface).str()))
|
|
return;
|
|
if (const auto *traitDef = dyn_cast<InterfaceTrait>(&trait))
|
|
if (&traitDef->getDef() == inferTrait)
|
|
return;
|
|
|
|
if (!def.isSubClassOf("AllTypesMatch"))
|
|
continue;
|
|
|
|
auto values = def.getValueAsListOfStrings("values");
|
|
auto root = argumentsAndResultsIndex.lookup(values.front());
|
|
for (StringRef str : values)
|
|
ecs.unionSets(argumentsAndResultsIndex.lookup(str), root);
|
|
}
|
|
|
|
// Verifies that all output types have a corresponding known input type
|
|
// and chooses matching operand or attribute (in that order) that
|
|
// matches it.
|
|
allResultsHaveKnownTypes =
|
|
all_of(llvm::seq<int>(0, getNumResults()), captureMapping);
|
|
|
|
// If the types could be computed, then add type inference trait.
|
|
if (allResultsHaveKnownTypes)
|
|
traits.push_back(Trait::create(inferTrait->getDefInit()));
|
|
}
|
|
|
|
void Operator::populateOpStructure() {
|
|
auto &recordKeeper = def.getRecords();
|
|
auto *typeConstraintClass = recordKeeper.getClass("TypeConstraint");
|
|
auto *attrClass = recordKeeper.getClass("Attr");
|
|
auto *derivedAttrClass = recordKeeper.getClass("DerivedAttr");
|
|
auto *opVarClass = recordKeeper.getClass("OpVariable");
|
|
numNativeAttributes = 0;
|
|
|
|
DagInit *argumentValues = def.getValueAsDag("arguments");
|
|
unsigned numArgs = argumentValues->getNumArgs();
|
|
|
|
// Mapping from name of to argument or result index. Arguments are indexed
|
|
// to match getArg index, while the results are negatively indexed.
|
|
llvm::StringMap<int> argumentsAndResultsIndex;
|
|
|
|
// Handle operands and native attributes.
|
|
for (unsigned i = 0; i != numArgs; ++i) {
|
|
auto *arg = argumentValues->getArg(i);
|
|
auto givenName = argumentValues->getArgNameStr(i);
|
|
auto *argDefInit = dyn_cast<DefInit>(arg);
|
|
if (!argDefInit)
|
|
PrintFatalError(def.getLoc(),
|
|
Twine("undefined type for argument #") + Twine(i));
|
|
Record *argDef = argDefInit->getDef();
|
|
if (argDef->isSubClassOf(opVarClass))
|
|
argDef = argDef->getValueAsDef("constraint");
|
|
|
|
if (argDef->isSubClassOf(typeConstraintClass)) {
|
|
operands.push_back(
|
|
NamedTypeConstraint{givenName, TypeConstraint(argDef)});
|
|
} else if (argDef->isSubClassOf(attrClass)) {
|
|
if (givenName.empty())
|
|
PrintFatalError(argDef->getLoc(), "attributes must be named");
|
|
if (argDef->isSubClassOf(derivedAttrClass))
|
|
PrintFatalError(argDef->getLoc(),
|
|
"derived attributes not allowed in argument list");
|
|
attributes.push_back({givenName, Attribute(argDef)});
|
|
++numNativeAttributes;
|
|
} else {
|
|
PrintFatalError(def.getLoc(), "unexpected def type; only defs deriving "
|
|
"from TypeConstraint or Attr are allowed");
|
|
}
|
|
if (!givenName.empty())
|
|
argumentsAndResultsIndex[givenName] = i;
|
|
}
|
|
|
|
// Handle derived attributes.
|
|
for (const auto &val : def.getValues()) {
|
|
if (auto *record = dyn_cast<llvm::RecordRecTy>(val.getType())) {
|
|
if (!record->isSubClassOf(attrClass))
|
|
continue;
|
|
if (!record->isSubClassOf(derivedAttrClass))
|
|
PrintFatalError(def.getLoc(),
|
|
"unexpected Attr where only DerivedAttr is allowed");
|
|
|
|
if (record->getClasses().size() != 1) {
|
|
PrintFatalError(
|
|
def.getLoc(),
|
|
"unsupported attribute modelling, only single class expected");
|
|
}
|
|
attributes.push_back(
|
|
{cast<llvm::StringInit>(val.getNameInit())->getValue(),
|
|
Attribute(cast<DefInit>(val.getValue()))});
|
|
}
|
|
}
|
|
|
|
// Populate `arguments`. This must happen after we've finalized `operands` and
|
|
// `attributes` because we will put their elements' pointers in `arguments`.
|
|
// SmallVector may perform re-allocation under the hood when adding new
|
|
// elements.
|
|
int operandIndex = 0, attrIndex = 0;
|
|
for (unsigned i = 0; i != numArgs; ++i) {
|
|
Record *argDef = dyn_cast<DefInit>(argumentValues->getArg(i))->getDef();
|
|
if (argDef->isSubClassOf(opVarClass))
|
|
argDef = argDef->getValueAsDef("constraint");
|
|
|
|
if (argDef->isSubClassOf(typeConstraintClass)) {
|
|
attrOrOperandMapping.push_back(
|
|
{OperandOrAttribute::Kind::Operand, operandIndex});
|
|
arguments.emplace_back(&operands[operandIndex++]);
|
|
} else {
|
|
assert(argDef->isSubClassOf(attrClass));
|
|
attrOrOperandMapping.push_back(
|
|
{OperandOrAttribute::Kind::Attribute, attrIndex});
|
|
arguments.emplace_back(&attributes[attrIndex++]);
|
|
}
|
|
}
|
|
|
|
auto *resultsDag = def.getValueAsDag("results");
|
|
auto *outsOp = dyn_cast<DefInit>(resultsDag->getOperator());
|
|
if (!outsOp || outsOp->getDef()->getName() != "outs") {
|
|
PrintFatalError(def.getLoc(), "'results' must have 'outs' directive");
|
|
}
|
|
|
|
// Handle results.
|
|
for (unsigned i = 0, e = resultsDag->getNumArgs(); i < e; ++i) {
|
|
auto name = resultsDag->getArgNameStr(i);
|
|
auto *resultInit = dyn_cast<DefInit>(resultsDag->getArg(i));
|
|
if (!resultInit) {
|
|
PrintFatalError(def.getLoc(),
|
|
Twine("undefined type for result #") + Twine(i));
|
|
}
|
|
auto *resultDef = resultInit->getDef();
|
|
if (resultDef->isSubClassOf(opVarClass))
|
|
resultDef = resultDef->getValueAsDef("constraint");
|
|
results.push_back({name, TypeConstraint(resultDef)});
|
|
if (!name.empty())
|
|
argumentsAndResultsIndex[name] = resultIndex(i);
|
|
|
|
// We currently only support VariadicOfVariadic operands.
|
|
if (results.back().constraint.isVariadicOfVariadic()) {
|
|
PrintFatalError(
|
|
def.getLoc(),
|
|
"'VariadicOfVariadic' results are currently not supported");
|
|
}
|
|
}
|
|
|
|
// Handle successors
|
|
auto *successorsDag = def.getValueAsDag("successors");
|
|
auto *successorsOp = dyn_cast<DefInit>(successorsDag->getOperator());
|
|
if (!successorsOp || successorsOp->getDef()->getName() != "successor") {
|
|
PrintFatalError(def.getLoc(),
|
|
"'successors' must have 'successor' directive");
|
|
}
|
|
|
|
for (unsigned i = 0, e = successorsDag->getNumArgs(); i < e; ++i) {
|
|
auto name = successorsDag->getArgNameStr(i);
|
|
auto *successorInit = dyn_cast<DefInit>(successorsDag->getArg(i));
|
|
if (!successorInit) {
|
|
PrintFatalError(def.getLoc(),
|
|
Twine("undefined kind for successor #") + Twine(i));
|
|
}
|
|
Successor successor(successorInit->getDef());
|
|
|
|
// Only support variadic successors if it is the last one for now.
|
|
if (i != e - 1 && successor.isVariadic())
|
|
PrintFatalError(def.getLoc(), "only the last successor can be variadic");
|
|
successors.push_back({name, successor});
|
|
}
|
|
|
|
// Create list of traits, skipping over duplicates: appending to lists in
|
|
// tablegen is easy, making them unique less so, so dedupe here.
|
|
if (auto *traitList = def.getValueAsListInit("traits")) {
|
|
// This is uniquing based on pointers of the trait.
|
|
SmallPtrSet<const llvm::Init *, 32> traitSet;
|
|
traits.reserve(traitSet.size());
|
|
|
|
// The declaration order of traits imply the verification order of traits.
|
|
// Some traits may require other traits to be verified first then they can
|
|
// do further verification based on those verified facts. If you see this
|
|
// error, fix the traits declaration order by checking the `dependentTraits`
|
|
// field.
|
|
auto verifyTraitValidity = [&](Record *trait) {
|
|
auto *dependentTraits = trait->getValueAsListInit("dependentTraits");
|
|
for (auto *traitInit : *dependentTraits)
|
|
if (traitSet.find(traitInit) == traitSet.end())
|
|
PrintFatalError(
|
|
def.getLoc(),
|
|
trait->getValueAsString("trait") + " requires " +
|
|
cast<DefInit>(traitInit)->getDef()->getValueAsString(
|
|
"trait") +
|
|
" to precede it in traits list");
|
|
};
|
|
|
|
std::function<void(llvm::ListInit *)> insert;
|
|
insert = [&](llvm::ListInit *traitList) {
|
|
for (auto *traitInit : *traitList) {
|
|
auto *def = cast<DefInit>(traitInit)->getDef();
|
|
if (def->isSubClassOf("TraitList")) {
|
|
insert(def->getValueAsListInit("traits"));
|
|
continue;
|
|
}
|
|
|
|
// Verify if the trait has all the dependent traits declared before
|
|
// itself.
|
|
verifyTraitValidity(def);
|
|
|
|
// Keep traits in the same order while skipping over duplicates.
|
|
if (traitSet.insert(traitInit).second)
|
|
traits.push_back(Trait::create(traitInit));
|
|
}
|
|
};
|
|
insert(traitList);
|
|
}
|
|
|
|
populateTypeInferenceInfo(argumentsAndResultsIndex);
|
|
|
|
// Handle regions
|
|
auto *regionsDag = def.getValueAsDag("regions");
|
|
auto *regionsOp = dyn_cast<DefInit>(regionsDag->getOperator());
|
|
if (!regionsOp || regionsOp->getDef()->getName() != "region") {
|
|
PrintFatalError(def.getLoc(), "'regions' must have 'region' directive");
|
|
}
|
|
|
|
for (unsigned i = 0, e = regionsDag->getNumArgs(); i < e; ++i) {
|
|
auto name = regionsDag->getArgNameStr(i);
|
|
auto *regionInit = dyn_cast<DefInit>(regionsDag->getArg(i));
|
|
if (!regionInit) {
|
|
PrintFatalError(def.getLoc(),
|
|
Twine("undefined kind for region #") + Twine(i));
|
|
}
|
|
Region region(regionInit->getDef());
|
|
if (region.isVariadic()) {
|
|
// Only support variadic regions if it is the last one for now.
|
|
if (i != e - 1)
|
|
PrintFatalError(def.getLoc(), "only the last region can be variadic");
|
|
if (name.empty())
|
|
PrintFatalError(def.getLoc(), "variadic regions must be named");
|
|
}
|
|
|
|
regions.push_back({name, region});
|
|
}
|
|
|
|
// Populate the builders.
|
|
auto *builderList =
|
|
dyn_cast_or_null<llvm::ListInit>(def.getValueInit("builders"));
|
|
if (builderList && !builderList->empty()) {
|
|
for (llvm::Init *init : builderList->getValues())
|
|
builders.emplace_back(cast<llvm::DefInit>(init)->getDef(), def.getLoc());
|
|
} else if (skipDefaultBuilders()) {
|
|
PrintFatalError(
|
|
def.getLoc(),
|
|
"default builders are skipped and no custom builders provided");
|
|
}
|
|
|
|
LLVM_DEBUG(print(llvm::dbgs()));
|
|
}
|
|
|
|
auto Operator::getSameTypeAsResult(int index) const -> ArrayRef<ArgOrType> {
|
|
assert(allResultTypesKnown());
|
|
return resultTypeMapping[index];
|
|
}
|
|
|
|
ArrayRef<SMLoc> Operator::getLoc() const { return def.getLoc(); }
|
|
|
|
bool Operator::hasDescription() const {
|
|
return def.getValue("description") != nullptr;
|
|
}
|
|
|
|
StringRef Operator::getDescription() const {
|
|
return def.getValueAsString("description");
|
|
}
|
|
|
|
bool Operator::hasSummary() const { return def.getValue("summary") != nullptr; }
|
|
|
|
StringRef Operator::getSummary() const {
|
|
return def.getValueAsString("summary");
|
|
}
|
|
|
|
bool Operator::hasAssemblyFormat() const {
|
|
auto *valueInit = def.getValueInit("assemblyFormat");
|
|
return isa<llvm::StringInit>(valueInit);
|
|
}
|
|
|
|
StringRef Operator::getAssemblyFormat() const {
|
|
return TypeSwitch<llvm::Init *, StringRef>(def.getValueInit("assemblyFormat"))
|
|
.Case<llvm::StringInit>([&](auto *init) { return init->getValue(); });
|
|
}
|
|
|
|
void Operator::print(llvm::raw_ostream &os) const {
|
|
os << "op '" << getOperationName() << "'\n";
|
|
for (Argument arg : arguments) {
|
|
if (auto *attr = arg.dyn_cast<NamedAttribute *>())
|
|
os << "[attribute] " << attr->name << '\n';
|
|
else
|
|
os << "[operand] " << arg.get<NamedTypeConstraint *>()->name << '\n';
|
|
}
|
|
}
|
|
|
|
auto Operator::VariableDecoratorIterator::unwrap(llvm::Init *init)
|
|
-> VariableDecorator {
|
|
return VariableDecorator(cast<llvm::DefInit>(init)->getDef());
|
|
}
|
|
|
|
auto Operator::getArgToOperandOrAttribute(int index) const
|
|
-> OperandOrAttribute {
|
|
return attrOrOperandMapping[index];
|
|
}
|
|
|
|
std::string Operator::getGetterName(StringRef name) const {
|
|
return "get" + convertToCamelFromSnakeCase(name, /*capitalizeFirst=*/true);
|
|
}
|
|
|
|
std::string Operator::getSetterName(StringRef name) const {
|
|
return "set" + convertToCamelFromSnakeCase(name, /*capitalizeFirst=*/true);
|
|
}
|
|
|
|
std::string Operator::getRemoverName(StringRef name) const {
|
|
return "remove" + convertToCamelFromSnakeCase(name, /*capitalizeFirst=*/true);
|
|
}
|