Files
clang-p2996/llvm/lib/Target/CSKY/AsmParser/CSKYAsmParser.cpp
Zi Xuan Wu 4bb60c285c [CSKY 6/n] Add support branch and symbol series instruction
This patch adds basic CSKY branch instructions and symbol address series instructions.
Those two kinds of instruction have relationship between each other, and it involves much work about Fixups.

For now, basic instructions are enabled except for disassembler support.
We would support to generate basic codegen asm firstly and delay disassembler work later.

Differential Revision: https://reviews.llvm.org/D95029
2021-04-20 15:36:49 +08:00

653 lines
20 KiB
C++

//===-- CSKYAsmParser.cpp - Parse CSKY assembly to MCInst instructions --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/CSKYMCExpr.h"
#include "MCTargetDesc/CSKYMCTargetDesc.h"
#include "TargetInfo/CSKYTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
namespace {
struct CSKYOperand;
class CSKYAsmParser : public MCTargetAsmParser {
bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
int64_t Lower, int64_t Upper, Twine Msg);
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) override;
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "CSKYGenAsmMatcher.inc"
OperandMatchResultTy parseImmediate(OperandVector &Operands);
OperandMatchResultTy parseRegister(OperandVector &Operands);
OperandMatchResultTy parseBaseRegImm(OperandVector &Operands);
OperandMatchResultTy parseCSKYSymbol(OperandVector &Operands);
OperandMatchResultTy parseConstpoolSymbol(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
public:
enum CSKYMatchResultTy {
Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "CSKYGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
CSKYAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
};
/// Instances of this class represent a parsed machine instruction.
struct CSKYOperand : public MCParsedAsmOperand {
enum KindTy {
Token,
Register,
Immediate,
} Kind;
struct RegOp {
unsigned RegNum;
};
struct ImmOp {
const MCExpr *Val;
};
SMLoc StartLoc, EndLoc;
union {
StringRef Tok;
RegOp Reg;
ImmOp Imm;
};
CSKYOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
CSKYOperand(const CSKYOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case Register:
Reg = o.Reg;
break;
case Immediate:
Imm = o.Imm;
break;
case Token:
Tok = o.Tok;
break;
}
}
bool isToken() const override { return Kind == Token; }
bool isReg() const override { return Kind == Register; }
bool isImm() const override { return Kind == Immediate; }
bool isMem() const override { return false; }
static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm) {
if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
Imm = CE->getValue();
return true;
}
return false;
}
template <unsigned num, unsigned shift = 0> bool isUImm() const {
if (!isImm())
return false;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isShiftedUInt<num, shift>(Imm);
}
template <unsigned num> bool isOImm() const {
if (!isImm())
return false;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isUInt<num>(Imm - 1);
}
template <unsigned num, unsigned shift = 0> bool isSImm() const {
if (!isImm())
return false;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isShiftedInt<num, shift>(Imm);
}
bool isUImm2() const { return isUImm<2>(); }
bool isUImm5() const { return isUImm<5>(); }
bool isUImm12() const { return isUImm<12>(); }
bool isUImm16() const { return isUImm<16>(); }
bool isOImm12() const { return isOImm<12>(); }
bool isOImm16() const { return isOImm<16>(); }
bool isUImm12Shift1() { return isUImm<12, 1>(); }
bool isUImm12Shift2() { return isUImm<12, 2>(); }
bool isSImm16Shift1() { return isSImm<16, 1>(); }
bool isCSKYSymbol() const {
int64_t Imm;
// Must be of 'immediate' type but not a constant.
return isImm() && !evaluateConstantImm(getImm(), Imm);
}
bool isConstpoolSymbol() const {
int64_t Imm;
// Must be of 'immediate' type but not a constant.
return isImm() && !evaluateConstantImm(getImm(), Imm);
}
/// Gets location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// Gets location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
unsigned getReg() const override {
assert(Kind == Register && "Invalid type access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid type access!");
return Imm.Val;
}
StringRef getToken() const {
assert(Kind == Token && "Invalid type access!");
return Tok;
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case Immediate:
OS << *getImm();
break;
case Register:
OS << "<register x" << getReg() << ">";
break;
case Token:
OS << "'" << getToken() << "'";
break;
}
}
static std::unique_ptr<CSKYOperand> createToken(StringRef Str, SMLoc S) {
auto Op = std::make_unique<CSKYOperand>(Token);
Op->Tok = Str;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<CSKYOperand> createReg(unsigned RegNo, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<CSKYOperand>(Register);
Op->Reg.RegNum = RegNo;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<CSKYOperand> createImm(const MCExpr *Val, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<CSKYOperand>(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
assert(Expr && "Expr shouldn't be null!");
if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Used by the TableGen Code.
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
};
} // end anonymous namespace.
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "CSKYGenAsmMatcher.inc"
static std::string CSKYMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
unsigned VariantID = 0);
bool CSKYAsmParser::generateImmOutOfRangeError(
OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
Twine Msg = "immediate must be an integer in the range") {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
}
bool CSKYAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
FeatureBitset MissingFeatures;
auto Result = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
MatchingInlineAsm);
switch (Result) {
default:
break;
case Match_Success:
Inst.setLoc(IDLoc);
Out.emitInstruction(Inst, getSTI());
return false;
case Match_MissingFeature: {
assert(MissingFeatures.any() && "Unknown missing features!");
ListSeparator LS;
std::string Msg = "instruction requires the following: ";
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
if (MissingFeatures[i]) {
Msg += LS;
Msg += getSubtargetFeatureName(i);
}
}
return Error(IDLoc, Msg);
}
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion =
CSKYMnemonicSpellCheck(((CSKYOperand &)*Operands[0]).getToken(), FBS);
return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
}
case Match_InvalidTiedOperand:
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
}
// Handle the case when the error message is of specific type
// other than the generic Match_InvalidOperand, and the
// corresponding operand is missing.
if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U && ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
}
switch (Result) {
default:
break;
case Match_InvalidOImm12:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 12));
case Match_InvalidOImm16:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 16));
case Match_InvalidUImm2:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 2) - 1);
case Match_InvalidUImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImm12:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1);
case Match_InvalidUImm12Shift1:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 12) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm12Shift2:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 12) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm16:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 16) - 1);
case Match_InvalidCSKYSymbol: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a symbol name");
}
case Match_InvalidConstpool: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a constpool symbol name");
}
}
llvm_unreachable("Unknown match type detected!");
}
// Attempts to match Name as a register (either using the default name or
// alternative ABI names), setting RegNo to the matching register. Upon
// failure, returns true and sets RegNo to 0.
static bool matchRegisterNameHelper(MCRegister &RegNo, StringRef Name) {
RegNo = MatchRegisterName(Name);
if (RegNo == CSKY::NoRegister)
RegNo = MatchRegisterAltName(Name);
return RegNo == CSKY::NoRegister;
}
bool CSKYAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
StringRef Name = getLexer().getTok().getIdentifier();
if (!matchRegisterNameHelper((MCRegister &)RegNo, Name)) {
getParser().Lex(); // Eat identifier token.
return false;
}
return Error(StartLoc, "invalid register name");
}
OperandMatchResultTy CSKYAsmParser::parseRegister(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::Identifier: {
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister RegNo;
if (matchRegisterNameHelper((MCRegister &)RegNo, Name))
return MatchOperand_NoMatch;
getLexer().Lex();
Operands.push_back(CSKYOperand::createReg(RegNo, S, E));
return MatchOperand_Success;
}
}
}
OperandMatchResultTy CSKYAsmParser::parseBaseRegImm(OperandVector &Operands) {
assert(getLexer().is(AsmToken::LParen));
Operands.push_back(CSKYOperand::createToken("(", getLoc()));
auto Tok = getParser().Lex(); // Eat '('
if (parseRegister(Operands) != MatchOperand_Success) {
getLexer().UnLex(Tok);
Operands.pop_back();
return MatchOperand_ParseFail;
}
if (getLexer().isNot(AsmToken::Comma)) {
Error(getLoc(), "expected ','");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat ','
if (parseRegister(Operands) == MatchOperand_Success) {
if (getLexer().isNot(AsmToken::LessLess)) {
Error(getLoc(), "expected '<<'");
return MatchOperand_ParseFail;
}
Operands.push_back(CSKYOperand::createToken("<<", getLoc()));
getParser().Lex(); // Eat '<<'
if (parseImmediate(Operands) != MatchOperand_Success) {
Error(getLoc(), "expected imm");
return MatchOperand_ParseFail;
}
} else if (parseImmediate(Operands) != MatchOperand_Success) {
Error(getLoc(), "expected imm");
return MatchOperand_ParseFail;
}
if (getLexer().isNot(AsmToken::RParen)) {
Error(getLoc(), "expected ')'");
return MatchOperand_ParseFail;
}
Operands.push_back(CSKYOperand::createToken(")", getLoc()));
getParser().Lex(); // Eat ')'
return MatchOperand_Success;
}
OperandMatchResultTy CSKYAsmParser::parseImmediate(OperandVector &Operands) {
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::String:
break;
}
const MCExpr *IdVal;
SMLoc S = getLoc();
if (getParser().parseExpression(IdVal))
return MatchOperand_ParseFail;
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
Operands.push_back(CSKYOperand::createImm(IdVal, S, E));
return MatchOperand_Success;
}
/// Looks at a token type and creates the relevant operand from this
/// information, adding to Operands. If operand was parsed, returns false, else
/// true.
bool CSKYAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy Result =
MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
if (Result == MatchOperand_Success)
return false;
if (Result == MatchOperand_ParseFail)
return true;
// Attempt to parse token as register
if (parseRegister(Operands) == MatchOperand_Success)
return false;
// Attempt to parse token as (register, imm)
if (getLexer().is(AsmToken::LParen))
if (parseBaseRegImm(Operands) == MatchOperand_Success)
return false;
// Attempt to parse token as a imm.
if (parseImmediate(Operands) == MatchOperand_Success)
return false;
// Finally we have exhausted all options and must declare defeat.
Error(getLoc(), "unknown operand");
return true;
}
OperandMatchResultTy CSKYAsmParser::parseCSKYSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
if (getLexer().getKind() != AsmToken::Identifier)
return MatchOperand_NoMatch;
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
CSKYMCExpr::VariantKind Kind = CSKYMCExpr::VK_CSKY_None;
if (Identifier.consume_back("@GOT"))
Kind = CSKYMCExpr::VK_CSKY_GOT;
else if (Identifier.consume_back("@GOTOFF"))
Kind = CSKYMCExpr::VK_CSKY_GOTOFF;
else if (Identifier.consume_back("@PLT"))
Kind = CSKYMCExpr::VK_CSKY_PLT;
else if (Identifier.consume_back("@GOTPC"))
Kind = CSKYMCExpr::VK_CSKY_GOTPC;
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
const MCExpr *Res =
MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
if (Kind != CSKYMCExpr::VK_CSKY_None)
Res = CSKYMCExpr::create(Res, Kind, getContext());
Operands.push_back(CSKYOperand::createImm(Res, S, E));
return MatchOperand_Success;
}
OperandMatchResultTy
CSKYAsmParser::parseConstpoolSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
if (getLexer().getKind() != AsmToken::LBrac)
return MatchOperand_NoMatch;
getLexer().Lex(); // Eat '['.
if (getLexer().getKind() != AsmToken::Identifier)
return MatchOperand_NoMatch;
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
if (getLexer().getKind() != AsmToken::RBrac)
return MatchOperand_NoMatch;
getLexer().Lex(); // Eat ']'.
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
const MCExpr *Res =
MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
Operands.push_back(CSKYOperand::createImm(Res, S, E));
return MatchOperand_Success;
}
bool CSKYAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
// First operand is token for instruction.
Operands.push_back(CSKYOperand::createToken(Name, NameLoc));
// If there are no more operands, then finish.
if (getLexer().is(AsmToken::EndOfStatement))
return false;
// Parse first operand.
if (parseOperand(Operands, Name))
return true;
// Parse until end of statement, consuming commas between operands.
while (getLexer().is(AsmToken::Comma)) {
// Consume comma token.
getLexer().Lex();
// Parse next operand.
if (parseOperand(Operands, Name))
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
getParser().eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
OperandMatchResultTy CSKYAsmParser::tryParseRegister(unsigned &RegNo,
SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
StringRef Name = getLexer().getTok().getIdentifier();
if (matchRegisterNameHelper((MCRegister &)RegNo, Name))
return MatchOperand_NoMatch;
getParser().Lex(); // Eat identifier token.
return MatchOperand_Success;
}
bool CSKYAsmParser::ParseDirective(AsmToken DirectiveID) { return true; }
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeCSKYAsmParser() {
RegisterMCAsmParser<CSKYAsmParser> X(getTheCSKYTarget());
}