_Generic accepts an expression operand whose type is matched against a list of associations. The expression operand is unevaluated, but the type matched is the type after lvalue conversion. This conversion loses type information, which makes it more difficult to match against qualified or incomplete types. This extension allows _Generic to accept a type operand instead of an expression operand. The type operand form does not undergo any conversions and is matched directly against the association list. This extension is also supported in C++ as we already supported _Generic selection expressions there. The RFC for this extension can be found at: https://discourse.llvm.org/t/rfc-generic-selection-expression-with-a-type-operand/70388 Differential Revision: https://reviews.llvm.org/D149904
632 lines
28 KiB
C++
632 lines
28 KiB
C++
//===---------- ExprMutationAnalyzer.cpp ----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/Analysis/Analyses/ExprMutationAnalyzer.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/OperationKinds.h"
|
|
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
|
#include "clang/ASTMatchers/ASTMatchers.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
namespace clang {
|
|
using namespace ast_matchers;
|
|
|
|
namespace {
|
|
|
|
AST_MATCHER_P(LambdaExpr, hasCaptureInit, const Expr *, E) {
|
|
return llvm::is_contained(Node.capture_inits(), E);
|
|
}
|
|
|
|
AST_MATCHER_P(CXXForRangeStmt, hasRangeStmt,
|
|
ast_matchers::internal::Matcher<DeclStmt>, InnerMatcher) {
|
|
const DeclStmt *const Range = Node.getRangeStmt();
|
|
return InnerMatcher.matches(*Range, Finder, Builder);
|
|
}
|
|
|
|
AST_MATCHER_P(Expr, maybeEvalCommaExpr, ast_matchers::internal::Matcher<Expr>,
|
|
InnerMatcher) {
|
|
const Expr *Result = &Node;
|
|
while (const auto *BOComma =
|
|
dyn_cast_or_null<BinaryOperator>(Result->IgnoreParens())) {
|
|
if (!BOComma->isCommaOp())
|
|
break;
|
|
Result = BOComma->getRHS();
|
|
}
|
|
return InnerMatcher.matches(*Result, Finder, Builder);
|
|
}
|
|
|
|
AST_MATCHER_P(Stmt, canResolveToExpr, ast_matchers::internal::Matcher<Stmt>,
|
|
InnerMatcher) {
|
|
auto *Exp = dyn_cast<Expr>(&Node);
|
|
if (!Exp) {
|
|
return stmt().matches(Node, Finder, Builder);
|
|
}
|
|
|
|
auto DerivedToBase = [](const ast_matchers::internal::Matcher<Expr> &Inner) {
|
|
return implicitCastExpr(anyOf(hasCastKind(CK_DerivedToBase),
|
|
hasCastKind(CK_UncheckedDerivedToBase)),
|
|
hasSourceExpression(Inner));
|
|
};
|
|
auto IgnoreDerivedToBase =
|
|
[&DerivedToBase](const ast_matchers::internal::Matcher<Expr> &Inner) {
|
|
return ignoringParens(expr(anyOf(Inner, DerivedToBase(Inner))));
|
|
};
|
|
|
|
// The 'ConditionalOperator' matches on `<anything> ? <expr> : <expr>`.
|
|
// This matching must be recursive because `<expr>` can be anything resolving
|
|
// to the `InnerMatcher`, for example another conditional operator.
|
|
// The edge-case `BaseClass &b = <cond> ? DerivedVar1 : DerivedVar2;`
|
|
// is handled, too. The implicit cast happens outside of the conditional.
|
|
// This is matched by `IgnoreDerivedToBase(canResolveToExpr(InnerMatcher))`
|
|
// below.
|
|
auto const ConditionalOperator = conditionalOperator(anyOf(
|
|
hasTrueExpression(ignoringParens(canResolveToExpr(InnerMatcher))),
|
|
hasFalseExpression(ignoringParens(canResolveToExpr(InnerMatcher)))));
|
|
auto const ElvisOperator = binaryConditionalOperator(anyOf(
|
|
hasTrueExpression(ignoringParens(canResolveToExpr(InnerMatcher))),
|
|
hasFalseExpression(ignoringParens(canResolveToExpr(InnerMatcher)))));
|
|
|
|
auto const ComplexMatcher = ignoringParens(
|
|
expr(anyOf(IgnoreDerivedToBase(InnerMatcher),
|
|
maybeEvalCommaExpr(IgnoreDerivedToBase(InnerMatcher)),
|
|
IgnoreDerivedToBase(ConditionalOperator),
|
|
IgnoreDerivedToBase(ElvisOperator))));
|
|
|
|
return ComplexMatcher.matches(*Exp, Finder, Builder);
|
|
}
|
|
|
|
// Similar to 'hasAnyArgument', but does not work because 'InitListExpr' does
|
|
// not have the 'arguments()' method.
|
|
AST_MATCHER_P(InitListExpr, hasAnyInit, ast_matchers::internal::Matcher<Expr>,
|
|
InnerMatcher) {
|
|
for (const Expr *Arg : Node.inits()) {
|
|
ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
|
|
if (InnerMatcher.matches(*Arg, Finder, &Result)) {
|
|
*Builder = std::move(Result);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const ast_matchers::internal::VariadicDynCastAllOfMatcher<Stmt, CXXTypeidExpr>
|
|
cxxTypeidExpr;
|
|
|
|
AST_MATCHER(CXXTypeidExpr, isPotentiallyEvaluated) {
|
|
return Node.isPotentiallyEvaluated();
|
|
}
|
|
|
|
AST_MATCHER_P(GenericSelectionExpr, hasControllingExpr,
|
|
ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
|
|
if (Node.isTypePredicate())
|
|
return false;
|
|
return InnerMatcher.matches(*Node.getControllingExpr(), Finder, Builder);
|
|
}
|
|
|
|
const auto nonConstReferenceType = [] {
|
|
return hasUnqualifiedDesugaredType(
|
|
referenceType(pointee(unless(isConstQualified()))));
|
|
};
|
|
|
|
const auto nonConstPointerType = [] {
|
|
return hasUnqualifiedDesugaredType(
|
|
pointerType(pointee(unless(isConstQualified()))));
|
|
};
|
|
|
|
const auto isMoveOnly = [] {
|
|
return cxxRecordDecl(
|
|
hasMethod(cxxConstructorDecl(isMoveConstructor(), unless(isDeleted()))),
|
|
hasMethod(cxxMethodDecl(isMoveAssignmentOperator(), unless(isDeleted()))),
|
|
unless(anyOf(hasMethod(cxxConstructorDecl(isCopyConstructor(),
|
|
unless(isDeleted()))),
|
|
hasMethod(cxxMethodDecl(isCopyAssignmentOperator(),
|
|
unless(isDeleted()))))));
|
|
};
|
|
|
|
template <class T> struct NodeID;
|
|
template <> struct NodeID<Expr> { static constexpr StringRef value = "expr"; };
|
|
template <> struct NodeID<Decl> { static constexpr StringRef value = "decl"; };
|
|
constexpr StringRef NodeID<Expr>::value;
|
|
constexpr StringRef NodeID<Decl>::value;
|
|
|
|
template <class T, class F = const Stmt *(ExprMutationAnalyzer::*)(const T *)>
|
|
const Stmt *tryEachMatch(ArrayRef<ast_matchers::BoundNodes> Matches,
|
|
ExprMutationAnalyzer *Analyzer, F Finder) {
|
|
const StringRef ID = NodeID<T>::value;
|
|
for (const auto &Nodes : Matches) {
|
|
if (const Stmt *S = (Analyzer->*Finder)(Nodes.getNodeAs<T>(ID)))
|
|
return S;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
const Stmt *ExprMutationAnalyzer::findMutation(const Expr *Exp) {
|
|
return findMutationMemoized(Exp,
|
|
{&ExprMutationAnalyzer::findDirectMutation,
|
|
&ExprMutationAnalyzer::findMemberMutation,
|
|
&ExprMutationAnalyzer::findArrayElementMutation,
|
|
&ExprMutationAnalyzer::findCastMutation,
|
|
&ExprMutationAnalyzer::findRangeLoopMutation,
|
|
&ExprMutationAnalyzer::findReferenceMutation,
|
|
&ExprMutationAnalyzer::findFunctionArgMutation},
|
|
Results);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findMutation(const Decl *Dec) {
|
|
return tryEachDeclRef(Dec, &ExprMutationAnalyzer::findMutation);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findPointeeMutation(const Expr *Exp) {
|
|
return findMutationMemoized(Exp, {/*TODO*/}, PointeeResults);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findPointeeMutation(const Decl *Dec) {
|
|
return tryEachDeclRef(Dec, &ExprMutationAnalyzer::findPointeeMutation);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findMutationMemoized(
|
|
const Expr *Exp, llvm::ArrayRef<MutationFinder> Finders,
|
|
ResultMap &MemoizedResults) {
|
|
const auto Memoized = MemoizedResults.find(Exp);
|
|
if (Memoized != MemoizedResults.end())
|
|
return Memoized->second;
|
|
|
|
if (isUnevaluated(Exp))
|
|
return MemoizedResults[Exp] = nullptr;
|
|
|
|
for (const auto &Finder : Finders) {
|
|
if (const Stmt *S = (this->*Finder)(Exp))
|
|
return MemoizedResults[Exp] = S;
|
|
}
|
|
|
|
return MemoizedResults[Exp] = nullptr;
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::tryEachDeclRef(const Decl *Dec,
|
|
MutationFinder Finder) {
|
|
const auto Refs =
|
|
match(findAll(declRefExpr(to(equalsNode(Dec))).bind(NodeID<Expr>::value)),
|
|
Stm, Context);
|
|
for (const auto &RefNodes : Refs) {
|
|
const auto *E = RefNodes.getNodeAs<Expr>(NodeID<Expr>::value);
|
|
if ((this->*Finder)(E))
|
|
return E;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool ExprMutationAnalyzer::isUnevaluated(const Stmt *Exp, const Stmt &Stm,
|
|
ASTContext &Context) {
|
|
return selectFirst<Stmt>(
|
|
NodeID<Expr>::value,
|
|
match(
|
|
findAll(
|
|
stmt(canResolveToExpr(equalsNode(Exp)),
|
|
anyOf(
|
|
// `Exp` is part of the underlying expression of
|
|
// decltype/typeof if it has an ancestor of
|
|
// typeLoc.
|
|
hasAncestor(typeLoc(unless(
|
|
hasAncestor(unaryExprOrTypeTraitExpr())))),
|
|
hasAncestor(expr(anyOf(
|
|
// `UnaryExprOrTypeTraitExpr` is unevaluated
|
|
// unless it's sizeof on VLA.
|
|
unaryExprOrTypeTraitExpr(unless(sizeOfExpr(
|
|
hasArgumentOfType(variableArrayType())))),
|
|
// `CXXTypeidExpr` is unevaluated unless it's
|
|
// applied to an expression of glvalue of
|
|
// polymorphic class type.
|
|
cxxTypeidExpr(
|
|
unless(isPotentiallyEvaluated())),
|
|
// The controlling expression of
|
|
// `GenericSelectionExpr` is unevaluated.
|
|
genericSelectionExpr(hasControllingExpr(
|
|
hasDescendant(equalsNode(Exp)))),
|
|
cxxNoexceptExpr())))))
|
|
.bind(NodeID<Expr>::value)),
|
|
Stm, Context)) != nullptr;
|
|
}
|
|
|
|
bool ExprMutationAnalyzer::isUnevaluated(const Expr *Exp) {
|
|
return isUnevaluated(Exp, Stm, Context);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::findExprMutation(ArrayRef<BoundNodes> Matches) {
|
|
return tryEachMatch<Expr>(Matches, this, &ExprMutationAnalyzer::findMutation);
|
|
}
|
|
|
|
const Stmt *
|
|
ExprMutationAnalyzer::findDeclMutation(ArrayRef<BoundNodes> Matches) {
|
|
return tryEachMatch<Decl>(Matches, this, &ExprMutationAnalyzer::findMutation);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findExprPointeeMutation(
|
|
ArrayRef<ast_matchers::BoundNodes> Matches) {
|
|
return tryEachMatch<Expr>(Matches, this,
|
|
&ExprMutationAnalyzer::findPointeeMutation);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findDeclPointeeMutation(
|
|
ArrayRef<ast_matchers::BoundNodes> Matches) {
|
|
return tryEachMatch<Decl>(Matches, this,
|
|
&ExprMutationAnalyzer::findPointeeMutation);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findDirectMutation(const Expr *Exp) {
|
|
// LHS of any assignment operators.
|
|
const auto AsAssignmentLhs = binaryOperator(
|
|
isAssignmentOperator(), hasLHS(canResolveToExpr(equalsNode(Exp))));
|
|
|
|
// Operand of increment/decrement operators.
|
|
const auto AsIncDecOperand =
|
|
unaryOperator(anyOf(hasOperatorName("++"), hasOperatorName("--")),
|
|
hasUnaryOperand(canResolveToExpr(equalsNode(Exp))));
|
|
|
|
// Invoking non-const member function.
|
|
// A member function is assumed to be non-const when it is unresolved.
|
|
const auto NonConstMethod = cxxMethodDecl(unless(isConst()));
|
|
|
|
const auto AsNonConstThis = expr(anyOf(
|
|
cxxMemberCallExpr(callee(NonConstMethod),
|
|
on(canResolveToExpr(equalsNode(Exp)))),
|
|
cxxOperatorCallExpr(callee(NonConstMethod),
|
|
hasArgument(0, canResolveToExpr(equalsNode(Exp)))),
|
|
// In case of a templated type, calling overloaded operators is not
|
|
// resolved and modelled as `binaryOperator` on a dependent type.
|
|
// Such instances are considered a modification, because they can modify
|
|
// in different instantiations of the template.
|
|
binaryOperator(hasEitherOperand(
|
|
allOf(ignoringImpCasts(canResolveToExpr(equalsNode(Exp))),
|
|
isTypeDependent()))),
|
|
// Within class templates and member functions the member expression might
|
|
// not be resolved. In that case, the `callExpr` is considered to be a
|
|
// modification.
|
|
callExpr(
|
|
callee(expr(anyOf(unresolvedMemberExpr(hasObjectExpression(
|
|
canResolveToExpr(equalsNode(Exp)))),
|
|
cxxDependentScopeMemberExpr(hasObjectExpression(
|
|
canResolveToExpr(equalsNode(Exp)))))))),
|
|
// Match on a call to a known method, but the call itself is type
|
|
// dependent (e.g. `vector<T> v; v.push(T{});` in a templated function).
|
|
callExpr(allOf(isTypeDependent(),
|
|
callee(memberExpr(hasDeclaration(NonConstMethod),
|
|
hasObjectExpression(canResolveToExpr(
|
|
equalsNode(Exp)))))))));
|
|
|
|
// Taking address of 'Exp'.
|
|
// We're assuming 'Exp' is mutated as soon as its address is taken, though in
|
|
// theory we can follow the pointer and see whether it escaped `Stm` or is
|
|
// dereferenced and then mutated. This is left for future improvements.
|
|
const auto AsAmpersandOperand =
|
|
unaryOperator(hasOperatorName("&"),
|
|
// A NoOp implicit cast is adding const.
|
|
unless(hasParent(implicitCastExpr(hasCastKind(CK_NoOp)))),
|
|
hasUnaryOperand(canResolveToExpr(equalsNode(Exp))));
|
|
const auto AsPointerFromArrayDecay =
|
|
castExpr(hasCastKind(CK_ArrayToPointerDecay),
|
|
unless(hasParent(arraySubscriptExpr())),
|
|
has(canResolveToExpr(equalsNode(Exp))));
|
|
// Treat calling `operator->()` of move-only classes as taking address.
|
|
// These are typically smart pointers with unique ownership so we treat
|
|
// mutation of pointee as mutation of the smart pointer itself.
|
|
const auto AsOperatorArrowThis = cxxOperatorCallExpr(
|
|
hasOverloadedOperatorName("->"),
|
|
callee(
|
|
cxxMethodDecl(ofClass(isMoveOnly()), returns(nonConstPointerType()))),
|
|
argumentCountIs(1), hasArgument(0, canResolveToExpr(equalsNode(Exp))));
|
|
|
|
// Used as non-const-ref argument when calling a function.
|
|
// An argument is assumed to be non-const-ref when the function is unresolved.
|
|
// Instantiated template functions are not handled here but in
|
|
// findFunctionArgMutation which has additional smarts for handling forwarding
|
|
// references.
|
|
const auto NonConstRefParam = forEachArgumentWithParamType(
|
|
anyOf(canResolveToExpr(equalsNode(Exp)),
|
|
memberExpr(hasObjectExpression(canResolveToExpr(equalsNode(Exp))))),
|
|
nonConstReferenceType());
|
|
const auto NotInstantiated = unless(hasDeclaration(isInstantiated()));
|
|
const auto TypeDependentCallee =
|
|
callee(expr(anyOf(unresolvedLookupExpr(), unresolvedMemberExpr(),
|
|
cxxDependentScopeMemberExpr(),
|
|
hasType(templateTypeParmType()), isTypeDependent())));
|
|
|
|
const auto AsNonConstRefArg = anyOf(
|
|
callExpr(NonConstRefParam, NotInstantiated),
|
|
cxxConstructExpr(NonConstRefParam, NotInstantiated),
|
|
callExpr(TypeDependentCallee,
|
|
hasAnyArgument(canResolveToExpr(equalsNode(Exp)))),
|
|
cxxUnresolvedConstructExpr(
|
|
hasAnyArgument(canResolveToExpr(equalsNode(Exp)))),
|
|
// Previous False Positive in the following Code:
|
|
// `template <typename T> void f() { int i = 42; new Type<T>(i); }`
|
|
// Where the constructor of `Type` takes its argument as reference.
|
|
// The AST does not resolve in a `cxxConstructExpr` because it is
|
|
// type-dependent.
|
|
parenListExpr(hasDescendant(expr(canResolveToExpr(equalsNode(Exp))))),
|
|
// If the initializer is for a reference type, there is no cast for
|
|
// the variable. Values are cast to RValue first.
|
|
initListExpr(hasAnyInit(expr(canResolveToExpr(equalsNode(Exp))))));
|
|
|
|
// Captured by a lambda by reference.
|
|
// If we're initializing a capture with 'Exp' directly then we're initializing
|
|
// a reference capture.
|
|
// For value captures there will be an ImplicitCastExpr <LValueToRValue>.
|
|
const auto AsLambdaRefCaptureInit = lambdaExpr(hasCaptureInit(Exp));
|
|
|
|
// Returned as non-const-ref.
|
|
// If we're returning 'Exp' directly then it's returned as non-const-ref.
|
|
// For returning by value there will be an ImplicitCastExpr <LValueToRValue>.
|
|
// For returning by const-ref there will be an ImplicitCastExpr <NoOp> (for
|
|
// adding const.)
|
|
const auto AsNonConstRefReturn =
|
|
returnStmt(hasReturnValue(canResolveToExpr(equalsNode(Exp))));
|
|
|
|
// It is used as a non-const-reference for initalizing a range-for loop.
|
|
const auto AsNonConstRefRangeInit = cxxForRangeStmt(
|
|
hasRangeInit(declRefExpr(allOf(canResolveToExpr(equalsNode(Exp)),
|
|
hasType(nonConstReferenceType())))));
|
|
|
|
const auto Matches = match(
|
|
traverse(TK_AsIs,
|
|
findAll(stmt(anyOf(AsAssignmentLhs, AsIncDecOperand,
|
|
AsNonConstThis, AsAmpersandOperand,
|
|
AsPointerFromArrayDecay, AsOperatorArrowThis,
|
|
AsNonConstRefArg, AsLambdaRefCaptureInit,
|
|
AsNonConstRefReturn, AsNonConstRefRangeInit))
|
|
.bind("stmt"))),
|
|
Stm, Context);
|
|
return selectFirst<Stmt>("stmt", Matches);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findMemberMutation(const Expr *Exp) {
|
|
// Check whether any member of 'Exp' is mutated.
|
|
const auto MemberExprs =
|
|
match(findAll(expr(anyOf(memberExpr(hasObjectExpression(
|
|
canResolveToExpr(equalsNode(Exp)))),
|
|
cxxDependentScopeMemberExpr(hasObjectExpression(
|
|
canResolveToExpr(equalsNode(Exp))))))
|
|
.bind(NodeID<Expr>::value)),
|
|
Stm, Context);
|
|
return findExprMutation(MemberExprs);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findArrayElementMutation(const Expr *Exp) {
|
|
// Check whether any element of an array is mutated.
|
|
const auto SubscriptExprs =
|
|
match(findAll(arraySubscriptExpr(
|
|
anyOf(hasBase(canResolveToExpr(equalsNode(Exp))),
|
|
hasBase(implicitCastExpr(
|
|
allOf(hasCastKind(CK_ArrayToPointerDecay),
|
|
hasSourceExpression(canResolveToExpr(
|
|
equalsNode(Exp))))))))
|
|
.bind(NodeID<Expr>::value)),
|
|
Stm, Context);
|
|
return findExprMutation(SubscriptExprs);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findCastMutation(const Expr *Exp) {
|
|
// If the 'Exp' is explicitly casted to a non-const reference type the
|
|
// 'Exp' is considered to be modified.
|
|
const auto ExplicitCast = match(
|
|
findAll(
|
|
stmt(castExpr(hasSourceExpression(canResolveToExpr(equalsNode(Exp))),
|
|
explicitCastExpr(
|
|
hasDestinationType(nonConstReferenceType()))))
|
|
.bind("stmt")),
|
|
Stm, Context);
|
|
|
|
if (const auto *CastStmt = selectFirst<Stmt>("stmt", ExplicitCast))
|
|
return CastStmt;
|
|
|
|
// If 'Exp' is casted to any non-const reference type, check the castExpr.
|
|
const auto Casts = match(
|
|
findAll(
|
|
expr(castExpr(hasSourceExpression(canResolveToExpr(equalsNode(Exp))),
|
|
anyOf(explicitCastExpr(
|
|
hasDestinationType(nonConstReferenceType())),
|
|
implicitCastExpr(hasImplicitDestinationType(
|
|
nonConstReferenceType())))))
|
|
.bind(NodeID<Expr>::value)),
|
|
Stm, Context);
|
|
|
|
if (const Stmt *S = findExprMutation(Casts))
|
|
return S;
|
|
// Treat std::{move,forward} as cast.
|
|
const auto Calls =
|
|
match(findAll(callExpr(callee(namedDecl(
|
|
hasAnyName("::std::move", "::std::forward"))),
|
|
hasArgument(0, canResolveToExpr(equalsNode(Exp))))
|
|
.bind("expr")),
|
|
Stm, Context);
|
|
return findExprMutation(Calls);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findRangeLoopMutation(const Expr *Exp) {
|
|
// Keep the ordering for the specific initialization matches to happen first,
|
|
// because it is cheaper to match all potential modifications of the loop
|
|
// variable.
|
|
|
|
// The range variable is a reference to a builtin array. In that case the
|
|
// array is considered modified if the loop-variable is a non-const reference.
|
|
const auto DeclStmtToNonRefToArray = declStmt(hasSingleDecl(varDecl(hasType(
|
|
hasUnqualifiedDesugaredType(referenceType(pointee(arrayType())))))));
|
|
const auto RefToArrayRefToElements =
|
|
match(findAll(stmt(cxxForRangeStmt(
|
|
hasLoopVariable(
|
|
varDecl(anyOf(hasType(nonConstReferenceType()),
|
|
hasType(nonConstPointerType())))
|
|
.bind(NodeID<Decl>::value)),
|
|
hasRangeStmt(DeclStmtToNonRefToArray),
|
|
hasRangeInit(canResolveToExpr(equalsNode(Exp)))))
|
|
.bind("stmt")),
|
|
Stm, Context);
|
|
|
|
if (const auto *BadRangeInitFromArray =
|
|
selectFirst<Stmt>("stmt", RefToArrayRefToElements))
|
|
return BadRangeInitFromArray;
|
|
|
|
// Small helper to match special cases in range-for loops.
|
|
//
|
|
// It is possible that containers do not provide a const-overload for their
|
|
// iterator accessors. If this is the case, the variable is used non-const
|
|
// no matter what happens in the loop. This requires special detection as it
|
|
// is then faster to find all mutations of the loop variable.
|
|
// It aims at a different modification as well.
|
|
const auto HasAnyNonConstIterator =
|
|
anyOf(allOf(hasMethod(allOf(hasName("begin"), unless(isConst()))),
|
|
unless(hasMethod(allOf(hasName("begin"), isConst())))),
|
|
allOf(hasMethod(allOf(hasName("end"), unless(isConst()))),
|
|
unless(hasMethod(allOf(hasName("end"), isConst())))));
|
|
|
|
const auto DeclStmtToNonConstIteratorContainer = declStmt(
|
|
hasSingleDecl(varDecl(hasType(hasUnqualifiedDesugaredType(referenceType(
|
|
pointee(hasDeclaration(cxxRecordDecl(HasAnyNonConstIterator)))))))));
|
|
|
|
const auto RefToContainerBadIterators =
|
|
match(findAll(stmt(cxxForRangeStmt(allOf(
|
|
hasRangeStmt(DeclStmtToNonConstIteratorContainer),
|
|
hasRangeInit(canResolveToExpr(equalsNode(Exp))))))
|
|
.bind("stmt")),
|
|
Stm, Context);
|
|
|
|
if (const auto *BadIteratorsContainer =
|
|
selectFirst<Stmt>("stmt", RefToContainerBadIterators))
|
|
return BadIteratorsContainer;
|
|
|
|
// If range for looping over 'Exp' with a non-const reference loop variable,
|
|
// check all declRefExpr of the loop variable.
|
|
const auto LoopVars =
|
|
match(findAll(cxxForRangeStmt(
|
|
hasLoopVariable(varDecl(hasType(nonConstReferenceType()))
|
|
.bind(NodeID<Decl>::value)),
|
|
hasRangeInit(canResolveToExpr(equalsNode(Exp))))),
|
|
Stm, Context);
|
|
return findDeclMutation(LoopVars);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findReferenceMutation(const Expr *Exp) {
|
|
// Follow non-const reference returned by `operator*()` of move-only classes.
|
|
// These are typically smart pointers with unique ownership so we treat
|
|
// mutation of pointee as mutation of the smart pointer itself.
|
|
const auto Ref =
|
|
match(findAll(cxxOperatorCallExpr(
|
|
hasOverloadedOperatorName("*"),
|
|
callee(cxxMethodDecl(ofClass(isMoveOnly()),
|
|
returns(nonConstReferenceType()))),
|
|
argumentCountIs(1),
|
|
hasArgument(0, canResolveToExpr(equalsNode(Exp))))
|
|
.bind(NodeID<Expr>::value)),
|
|
Stm, Context);
|
|
if (const Stmt *S = findExprMutation(Ref))
|
|
return S;
|
|
|
|
// If 'Exp' is bound to a non-const reference, check all declRefExpr to that.
|
|
const auto Refs = match(
|
|
stmt(forEachDescendant(
|
|
varDecl(
|
|
hasType(nonConstReferenceType()),
|
|
hasInitializer(anyOf(canResolveToExpr(equalsNode(Exp)),
|
|
memberExpr(hasObjectExpression(
|
|
canResolveToExpr(equalsNode(Exp)))))),
|
|
hasParent(declStmt().bind("stmt")),
|
|
// Don't follow the reference in range statement, we've
|
|
// handled that separately.
|
|
unless(hasParent(declStmt(hasParent(
|
|
cxxForRangeStmt(hasRangeStmt(equalsBoundNode("stmt"))))))))
|
|
.bind(NodeID<Decl>::value))),
|
|
Stm, Context);
|
|
return findDeclMutation(Refs);
|
|
}
|
|
|
|
const Stmt *ExprMutationAnalyzer::findFunctionArgMutation(const Expr *Exp) {
|
|
const auto NonConstRefParam = forEachArgumentWithParam(
|
|
canResolveToExpr(equalsNode(Exp)),
|
|
parmVarDecl(hasType(nonConstReferenceType())).bind("parm"));
|
|
const auto IsInstantiated = hasDeclaration(isInstantiated());
|
|
const auto FuncDecl = hasDeclaration(functionDecl().bind("func"));
|
|
const auto Matches = match(
|
|
traverse(
|
|
TK_AsIs,
|
|
findAll(
|
|
expr(anyOf(callExpr(NonConstRefParam, IsInstantiated, FuncDecl,
|
|
unless(callee(namedDecl(hasAnyName(
|
|
"::std::move", "::std::forward"))))),
|
|
cxxConstructExpr(NonConstRefParam, IsInstantiated,
|
|
FuncDecl)))
|
|
.bind(NodeID<Expr>::value))),
|
|
Stm, Context);
|
|
for (const auto &Nodes : Matches) {
|
|
const auto *Exp = Nodes.getNodeAs<Expr>(NodeID<Expr>::value);
|
|
const auto *Func = Nodes.getNodeAs<FunctionDecl>("func");
|
|
if (!Func->getBody() || !Func->getPrimaryTemplate())
|
|
return Exp;
|
|
|
|
const auto *Parm = Nodes.getNodeAs<ParmVarDecl>("parm");
|
|
const ArrayRef<ParmVarDecl *> AllParams =
|
|
Func->getPrimaryTemplate()->getTemplatedDecl()->parameters();
|
|
QualType ParmType =
|
|
AllParams[std::min<size_t>(Parm->getFunctionScopeIndex(),
|
|
AllParams.size() - 1)]
|
|
->getType();
|
|
if (const auto *T = ParmType->getAs<PackExpansionType>())
|
|
ParmType = T->getPattern();
|
|
|
|
// If param type is forwarding reference, follow into the function
|
|
// definition and see whether the param is mutated inside.
|
|
if (const auto *RefType = ParmType->getAs<RValueReferenceType>()) {
|
|
if (!RefType->getPointeeType().getQualifiers() &&
|
|
RefType->getPointeeType()->getAs<TemplateTypeParmType>()) {
|
|
std::unique_ptr<FunctionParmMutationAnalyzer> &Analyzer =
|
|
FuncParmAnalyzer[Func];
|
|
if (!Analyzer)
|
|
Analyzer.reset(new FunctionParmMutationAnalyzer(*Func, Context));
|
|
if (Analyzer->findMutation(Parm))
|
|
return Exp;
|
|
continue;
|
|
}
|
|
}
|
|
// Not forwarding reference.
|
|
return Exp;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
FunctionParmMutationAnalyzer::FunctionParmMutationAnalyzer(
|
|
const FunctionDecl &Func, ASTContext &Context)
|
|
: BodyAnalyzer(*Func.getBody(), Context) {
|
|
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(&Func)) {
|
|
// CXXCtorInitializer might also mutate Param but they're not part of
|
|
// function body, check them eagerly here since they're typically trivial.
|
|
for (const CXXCtorInitializer *Init : Ctor->inits()) {
|
|
ExprMutationAnalyzer InitAnalyzer(*Init->getInit(), Context);
|
|
for (const ParmVarDecl *Parm : Ctor->parameters()) {
|
|
if (Results.contains(Parm))
|
|
continue;
|
|
if (const Stmt *S = InitAnalyzer.findMutation(Parm))
|
|
Results[Parm] = S;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const Stmt *
|
|
FunctionParmMutationAnalyzer::findMutation(const ParmVarDecl *Parm) {
|
|
const auto Memoized = Results.find(Parm);
|
|
if (Memoized != Results.end())
|
|
return Memoized->second;
|
|
|
|
if (const Stmt *S = BodyAnalyzer.findMutation(Parm))
|
|
return Results[Parm] = S;
|
|
|
|
return Results[Parm] = nullptr;
|
|
}
|
|
|
|
} // namespace clang
|