Files
clang-p2996/llvm/lib/MC/MCSchedule.cpp
Francesco Petrogalli aee34000f9 [MISched][rework] Introduce and use ResourceSegments.
Re-landing the code that was reverted because of the buildbot failure
in https://lab.llvm.org/buildbot#builders/9/builds/27319.

Original commit message
======================

The class `ResourceSegments` is used to keep track of the intervals
that represent resource usage of a list of instructions that are
being scheduled by the machine scheduler.

The collection is made of intervals that are closed on the left and
open on the right (represented by the standard notation `[a, b)`).

These collections of intervals can be extended by `add`ing new
intervals accordingly while scheduling a basic block.

Unit tests are added to verify the possible configurations of
intervals, and the relative possibility of scheduling a new
instruction in these configurations. Specifically, the methods
`getFirstAvailableAtFromBottom` and `getFirstAvailableAtFromTop` are
tested to make sure that both bottom-up and top-down scheduling work
when tracking resource usage across the basic block with
`ResourceSegments`.

Note that the scheduler tracks resource usage with two methods:

1. counters (via `std::vector<unsigned> ReservedCycles;`);

2. intervals (via `std::map<unsigned, ResourceSegments> ReservedResourceSegments;`).

This patch can be considered a NFC test for existing scheduling models
because the tracking system that uses intervals is turned off by
default (field `bit EnableIntervals = false;` in the tablegen class
`SchedMachineModel`).

Reviewed By: andreadb

Differential Revision: https://reviews.llvm.org/D150312
2023-06-09 15:02:00 +02:00

170 lines
6.2 KiB
C++

//===- MCSchedule.cpp - Scheduling ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the default scheduling model.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCSchedule.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include <optional>
#include <type_traits>
using namespace llvm;
static_assert(std::is_pod<MCSchedModel>::value,
"We shouldn't have a static constructor here");
const MCSchedModel MCSchedModel::Default = {DefaultIssueWidth,
DefaultMicroOpBufferSize,
DefaultLoopMicroOpBufferSize,
DefaultLoadLatency,
DefaultHighLatency,
DefaultMispredictPenalty,
false,
true,
false /*EnableIntervals*/,
0,
nullptr,
nullptr,
0,
0,
nullptr,
nullptr};
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
const MCSchedClassDesc &SCDesc) {
int Latency = 0;
for (unsigned DefIdx = 0, DefEnd = SCDesc.NumWriteLatencyEntries;
DefIdx != DefEnd; ++DefIdx) {
// Lookup the definition's write latency in SubtargetInfo.
const MCWriteLatencyEntry *WLEntry =
STI.getWriteLatencyEntry(&SCDesc, DefIdx);
// Early exit if we found an invalid latency.
if (WLEntry->Cycles < 0)
return WLEntry->Cycles;
Latency = std::max(Latency, static_cast<int>(WLEntry->Cycles));
}
return Latency;
}
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
unsigned SchedClass) const {
const MCSchedClassDesc &SCDesc = *getSchedClassDesc(SchedClass);
if (!SCDesc.isValid())
return 0;
if (!SCDesc.isVariant())
return MCSchedModel::computeInstrLatency(STI, SCDesc);
llvm_unreachable("unsupported variant scheduling class");
}
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
const MCInstrInfo &MCII,
const MCInst &Inst) const {
unsigned SchedClass = MCII.get(Inst.getOpcode()).getSchedClass();
const MCSchedClassDesc *SCDesc = getSchedClassDesc(SchedClass);
if (!SCDesc->isValid())
return 0;
unsigned CPUID = getProcessorID();
while (SCDesc->isVariant()) {
SchedClass = STI.resolveVariantSchedClass(SchedClass, &Inst, &MCII, CPUID);
SCDesc = getSchedClassDesc(SchedClass);
}
if (SchedClass)
return MCSchedModel::computeInstrLatency(STI, *SCDesc);
llvm_unreachable("unsupported variant scheduling class");
}
double
MCSchedModel::getReciprocalThroughput(const MCSubtargetInfo &STI,
const MCSchedClassDesc &SCDesc) {
std::optional<double> Throughput;
const MCSchedModel &SM = STI.getSchedModel();
const MCWriteProcResEntry *I = STI.getWriteProcResBegin(&SCDesc);
const MCWriteProcResEntry *E = STI.getWriteProcResEnd(&SCDesc);
for (; I != E; ++I) {
if (!I->Cycles)
continue;
unsigned NumUnits = SM.getProcResource(I->ProcResourceIdx)->NumUnits;
double Temp = NumUnits * 1.0 / I->Cycles;
Throughput = Throughput ? std::min(*Throughput, Temp) : Temp;
}
if (Throughput)
return 1.0 / *Throughput;
// If no throughput value was calculated, assume that we can execute at the
// maximum issue width scaled by number of micro-ops for the schedule class.
return ((double)SCDesc.NumMicroOps) / SM.IssueWidth;
}
double
MCSchedModel::getReciprocalThroughput(const MCSubtargetInfo &STI,
const MCInstrInfo &MCII,
const MCInst &Inst) const {
unsigned SchedClass = MCII.get(Inst.getOpcode()).getSchedClass();
const MCSchedClassDesc *SCDesc = getSchedClassDesc(SchedClass);
// If there's no valid class, assume that the instruction executes/completes
// at the maximum issue width.
if (!SCDesc->isValid())
return 1.0 / IssueWidth;
unsigned CPUID = getProcessorID();
while (SCDesc->isVariant()) {
SchedClass = STI.resolveVariantSchedClass(SchedClass, &Inst, &MCII, CPUID);
SCDesc = getSchedClassDesc(SchedClass);
}
if (SchedClass)
return MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
llvm_unreachable("unsupported variant scheduling class");
}
double
MCSchedModel::getReciprocalThroughput(unsigned SchedClass,
const InstrItineraryData &IID) {
std::optional<double> Throughput;
const InstrStage *I = IID.beginStage(SchedClass);
const InstrStage *E = IID.endStage(SchedClass);
for (; I != E; ++I) {
if (!I->getCycles())
continue;
double Temp = llvm::popcount(I->getUnits()) * 1.0 / I->getCycles();
Throughput = Throughput ? std::min(*Throughput, Temp) : Temp;
}
if (Throughput)
return 1.0 / *Throughput;
// If there are no execution resources specified for this class, then assume
// that it can execute at the maximum default issue width.
return 1.0 / DefaultIssueWidth;
}
unsigned
MCSchedModel::getForwardingDelayCycles(ArrayRef<MCReadAdvanceEntry> Entries,
unsigned WriteResourceID) {
if (Entries.empty())
return 0;
int DelayCycles = 0;
for (const MCReadAdvanceEntry &E : Entries) {
if (E.WriteResourceID != WriteResourceID)
continue;
DelayCycles = std::min(DelayCycles, E.Cycles);
}
return std::abs(DelayCycles);
}