The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
572 lines
23 KiB
C++
572 lines
23 KiB
C++
//===- AffineToStandard.cpp - Lower affine constructs to primitives -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file lowers affine constructs (If and For statements, AffineApply
|
|
// operations) within a function into their standard If and For equivalent ops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Affine/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_CONVERTAFFINETOSTANDARD
|
|
#include "mlir/Conversion/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::affine;
|
|
using namespace mlir::vector;
|
|
|
|
/// Given a range of values, emit the code that reduces them with "min" or "max"
|
|
/// depending on the provided comparison predicate. The predicate defines which
|
|
/// comparison to perform, "lt" for "min", "gt" for "max" and is used for the
|
|
/// `cmpi` operation followed by the `select` operation:
|
|
///
|
|
/// %cond = arith.cmpi "predicate" %v0, %v1
|
|
/// %result = select %cond, %v0, %v1
|
|
///
|
|
/// Multiple values are scanned in a linear sequence. This creates a data
|
|
/// dependences that wouldn't exist in a tree reduction, but is easier to
|
|
/// recognize as a reduction by the subsequent passes.
|
|
static Value buildMinMaxReductionSeq(Location loc,
|
|
arith::CmpIPredicate predicate,
|
|
ValueRange values, OpBuilder &builder) {
|
|
assert(!values.empty() && "empty min/max chain");
|
|
|
|
auto valueIt = values.begin();
|
|
Value value = *valueIt++;
|
|
for (; valueIt != values.end(); ++valueIt) {
|
|
auto cmpOp = builder.create<arith::CmpIOp>(loc, predicate, value, *valueIt);
|
|
value = builder.create<arith::SelectOp>(loc, cmpOp.getResult(), value,
|
|
*valueIt);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/// Emit instructions that correspond to computing the maximum value among the
|
|
/// values of a (potentially) multi-output affine map applied to `operands`.
|
|
static Value lowerAffineMapMax(OpBuilder &builder, Location loc, AffineMap map,
|
|
ValueRange operands) {
|
|
if (auto values = expandAffineMap(builder, loc, map, operands))
|
|
return buildMinMaxReductionSeq(loc, arith::CmpIPredicate::sgt, *values,
|
|
builder);
|
|
return nullptr;
|
|
}
|
|
|
|
/// Emit instructions that correspond to computing the minimum value among the
|
|
/// values of a (potentially) multi-output affine map applied to `operands`.
|
|
static Value lowerAffineMapMin(OpBuilder &builder, Location loc, AffineMap map,
|
|
ValueRange operands) {
|
|
if (auto values = expandAffineMap(builder, loc, map, operands))
|
|
return buildMinMaxReductionSeq(loc, arith::CmpIPredicate::slt, *values,
|
|
builder);
|
|
return nullptr;
|
|
}
|
|
|
|
/// Emit instructions that correspond to the affine map in the upper bound
|
|
/// applied to the respective operands, and compute the minimum value across
|
|
/// the results.
|
|
Value mlir::lowerAffineUpperBound(AffineForOp op, OpBuilder &builder) {
|
|
return lowerAffineMapMin(builder, op.getLoc(), op.getUpperBoundMap(),
|
|
op.getUpperBoundOperands());
|
|
}
|
|
|
|
/// Emit instructions that correspond to the affine map in the lower bound
|
|
/// applied to the respective operands, and compute the maximum value across
|
|
/// the results.
|
|
Value mlir::lowerAffineLowerBound(AffineForOp op, OpBuilder &builder) {
|
|
return lowerAffineMapMax(builder, op.getLoc(), op.getLowerBoundMap(),
|
|
op.getLowerBoundOperands());
|
|
}
|
|
|
|
namespace {
|
|
class AffineMinLowering : public OpRewritePattern<AffineMinOp> {
|
|
public:
|
|
using OpRewritePattern<AffineMinOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineMinOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value reduced =
|
|
lowerAffineMapMin(rewriter, op.getLoc(), op.getMap(), op.getOperands());
|
|
if (!reduced)
|
|
return failure();
|
|
|
|
rewriter.replaceOp(op, reduced);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class AffineMaxLowering : public OpRewritePattern<AffineMaxOp> {
|
|
public:
|
|
using OpRewritePattern<AffineMaxOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineMaxOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value reduced =
|
|
lowerAffineMapMax(rewriter, op.getLoc(), op.getMap(), op.getOperands());
|
|
if (!reduced)
|
|
return failure();
|
|
|
|
rewriter.replaceOp(op, reduced);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Affine yields ops are removed.
|
|
class AffineYieldOpLowering : public OpRewritePattern<AffineYieldOp> {
|
|
public:
|
|
using OpRewritePattern<AffineYieldOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineYieldOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (isa<scf::ParallelOp>(op->getParentOp())) {
|
|
// scf.parallel does not yield any values via its terminator scf.yield but
|
|
// models reductions differently using additional ops in its region.
|
|
rewriter.replaceOpWithNewOp<scf::YieldOp>(op);
|
|
return success();
|
|
}
|
|
rewriter.replaceOpWithNewOp<scf::YieldOp>(op, op.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class AffineForLowering : public OpRewritePattern<AffineForOp> {
|
|
public:
|
|
using OpRewritePattern<AffineForOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineForOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value lowerBound = lowerAffineLowerBound(op, rewriter);
|
|
Value upperBound = lowerAffineUpperBound(op, rewriter);
|
|
Value step = rewriter.create<arith::ConstantIndexOp>(loc, op.getStep());
|
|
auto scfForOp = rewriter.create<scf::ForOp>(loc, lowerBound, upperBound,
|
|
step, op.getIterOperands());
|
|
rewriter.eraseBlock(scfForOp.getBody());
|
|
rewriter.inlineRegionBefore(op.getRegion(), scfForOp.getRegion(),
|
|
scfForOp.getRegion().end());
|
|
rewriter.replaceOp(op, scfForOp.getResults());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Convert an `affine.parallel` (loop nest) operation into a `scf.parallel`
|
|
/// operation.
|
|
class AffineParallelLowering : public OpRewritePattern<AffineParallelOp> {
|
|
public:
|
|
using OpRewritePattern<AffineParallelOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineParallelOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
SmallVector<Value, 8> steps;
|
|
SmallVector<Value, 8> upperBoundTuple;
|
|
SmallVector<Value, 8> lowerBoundTuple;
|
|
SmallVector<Value, 8> identityVals;
|
|
// Emit IR computing the lower and upper bound by expanding the map
|
|
// expression.
|
|
lowerBoundTuple.reserve(op.getNumDims());
|
|
upperBoundTuple.reserve(op.getNumDims());
|
|
for (unsigned i = 0, e = op.getNumDims(); i < e; ++i) {
|
|
Value lower = lowerAffineMapMax(rewriter, loc, op.getLowerBoundMap(i),
|
|
op.getLowerBoundsOperands());
|
|
if (!lower)
|
|
return rewriter.notifyMatchFailure(op, "couldn't convert lower bounds");
|
|
lowerBoundTuple.push_back(lower);
|
|
|
|
Value upper = lowerAffineMapMin(rewriter, loc, op.getUpperBoundMap(i),
|
|
op.getUpperBoundsOperands());
|
|
if (!upper)
|
|
return rewriter.notifyMatchFailure(op, "couldn't convert upper bounds");
|
|
upperBoundTuple.push_back(upper);
|
|
}
|
|
steps.reserve(op.getSteps().size());
|
|
for (int64_t step : op.getSteps())
|
|
steps.push_back(rewriter.create<arith::ConstantIndexOp>(loc, step));
|
|
|
|
// Get the terminator op.
|
|
Operation *affineParOpTerminator = op.getBody()->getTerminator();
|
|
scf::ParallelOp parOp;
|
|
if (op.getResults().empty()) {
|
|
// Case with no reduction operations/return values.
|
|
parOp = rewriter.create<scf::ParallelOp>(loc, lowerBoundTuple,
|
|
upperBoundTuple, steps,
|
|
/*bodyBuilderFn=*/nullptr);
|
|
rewriter.eraseBlock(parOp.getBody());
|
|
rewriter.inlineRegionBefore(op.getRegion(), parOp.getRegion(),
|
|
parOp.getRegion().end());
|
|
rewriter.replaceOp(op, parOp.getResults());
|
|
return success();
|
|
}
|
|
// Case with affine.parallel with reduction operations/return values.
|
|
// scf.parallel handles the reduction operation differently unlike
|
|
// affine.parallel.
|
|
ArrayRef<Attribute> reductions = op.getReductions().getValue();
|
|
for (auto pair : llvm::zip(reductions, op.getResultTypes())) {
|
|
// For each of the reduction operations get the identity values for
|
|
// initialization of the result values.
|
|
Attribute reduction = std::get<0>(pair);
|
|
Type resultType = std::get<1>(pair);
|
|
std::optional<arith::AtomicRMWKind> reductionOp =
|
|
arith::symbolizeAtomicRMWKind(
|
|
static_cast<uint64_t>(cast<IntegerAttr>(reduction).getInt()));
|
|
assert(reductionOp && "Reduction operation cannot be of None Type");
|
|
arith::AtomicRMWKind reductionOpValue = *reductionOp;
|
|
identityVals.push_back(
|
|
arith::getIdentityValue(reductionOpValue, resultType, rewriter, loc));
|
|
}
|
|
parOp = rewriter.create<scf::ParallelOp>(
|
|
loc, lowerBoundTuple, upperBoundTuple, steps, identityVals,
|
|
/*bodyBuilderFn=*/nullptr);
|
|
|
|
// Copy the body of the affine.parallel op.
|
|
rewriter.eraseBlock(parOp.getBody());
|
|
rewriter.inlineRegionBefore(op.getRegion(), parOp.getRegion(),
|
|
parOp.getRegion().end());
|
|
assert(reductions.size() == affineParOpTerminator->getNumOperands() &&
|
|
"Unequal number of reductions and operands.");
|
|
for (unsigned i = 0, end = reductions.size(); i < end; i++) {
|
|
// For each of the reduction operations get the respective mlir::Value.
|
|
std::optional<arith::AtomicRMWKind> reductionOp =
|
|
arith::symbolizeAtomicRMWKind(
|
|
cast<IntegerAttr>(reductions[i]).getInt());
|
|
assert(reductionOp && "Reduction Operation cannot be of None Type");
|
|
arith::AtomicRMWKind reductionOpValue = *reductionOp;
|
|
rewriter.setInsertionPoint(&parOp.getBody()->back());
|
|
auto reduceOp = rewriter.create<scf::ReduceOp>(
|
|
loc, affineParOpTerminator->getOperand(i));
|
|
rewriter.setInsertionPointToEnd(&reduceOp.getReductionOperator().front());
|
|
Value reductionResult = arith::getReductionOp(
|
|
reductionOpValue, rewriter, loc,
|
|
reduceOp.getReductionOperator().front().getArgument(0),
|
|
reduceOp.getReductionOperator().front().getArgument(1));
|
|
rewriter.create<scf::ReduceReturnOp>(loc, reductionResult);
|
|
}
|
|
rewriter.replaceOp(op, parOp.getResults());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class AffineIfLowering : public OpRewritePattern<AffineIfOp> {
|
|
public:
|
|
using OpRewritePattern<AffineIfOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineIfOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
|
|
// Now we just have to handle the condition logic.
|
|
auto integerSet = op.getIntegerSet();
|
|
Value zeroConstant = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
SmallVector<Value, 8> operands(op.getOperands());
|
|
auto operandsRef = llvm::ArrayRef(operands);
|
|
|
|
// Calculate cond as a conjunction without short-circuiting.
|
|
Value cond = nullptr;
|
|
for (unsigned i = 0, e = integerSet.getNumConstraints(); i < e; ++i) {
|
|
AffineExpr constraintExpr = integerSet.getConstraint(i);
|
|
bool isEquality = integerSet.isEq(i);
|
|
|
|
// Build and apply an affine expression
|
|
auto numDims = integerSet.getNumDims();
|
|
Value affResult = expandAffineExpr(rewriter, loc, constraintExpr,
|
|
operandsRef.take_front(numDims),
|
|
operandsRef.drop_front(numDims));
|
|
if (!affResult)
|
|
return failure();
|
|
auto pred =
|
|
isEquality ? arith::CmpIPredicate::eq : arith::CmpIPredicate::sge;
|
|
Value cmpVal =
|
|
rewriter.create<arith::CmpIOp>(loc, pred, affResult, zeroConstant);
|
|
cond = cond
|
|
? rewriter.create<arith::AndIOp>(loc, cond, cmpVal).getResult()
|
|
: cmpVal;
|
|
}
|
|
cond = cond ? cond
|
|
: rewriter.create<arith::ConstantIntOp>(loc, /*value=*/1,
|
|
/*width=*/1);
|
|
|
|
bool hasElseRegion = !op.getElseRegion().empty();
|
|
auto ifOp = rewriter.create<scf::IfOp>(loc, op.getResultTypes(), cond,
|
|
hasElseRegion);
|
|
rewriter.inlineRegionBefore(op.getThenRegion(),
|
|
&ifOp.getThenRegion().back());
|
|
rewriter.eraseBlock(&ifOp.getThenRegion().back());
|
|
if (hasElseRegion) {
|
|
rewriter.inlineRegionBefore(op.getElseRegion(),
|
|
&ifOp.getElseRegion().back());
|
|
rewriter.eraseBlock(&ifOp.getElseRegion().back());
|
|
}
|
|
|
|
// Replace the Affine IfOp finally.
|
|
rewriter.replaceOp(op, ifOp.getResults());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Convert an "affine.apply" operation into a sequence of arithmetic
|
|
/// operations using the StandardOps dialect.
|
|
class AffineApplyLowering : public OpRewritePattern<AffineApplyOp> {
|
|
public:
|
|
using OpRewritePattern<AffineApplyOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineApplyOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto maybeExpandedMap =
|
|
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(),
|
|
llvm::to_vector<8>(op.getOperands()));
|
|
if (!maybeExpandedMap)
|
|
return failure();
|
|
rewriter.replaceOp(op, *maybeExpandedMap);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Apply the affine map from an 'affine.load' operation to its operands, and
|
|
/// feed the results to a newly created 'memref.load' operation (which replaces
|
|
/// the original 'affine.load').
|
|
class AffineLoadLowering : public OpRewritePattern<AffineLoadOp> {
|
|
public:
|
|
using OpRewritePattern<AffineLoadOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineLoadOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Expand affine map from 'affineLoadOp'.
|
|
SmallVector<Value, 8> indices(op.getMapOperands());
|
|
auto resultOperands =
|
|
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
|
|
if (!resultOperands)
|
|
return failure();
|
|
|
|
// Build vector.load memref[expandedMap.results].
|
|
rewriter.replaceOpWithNewOp<memref::LoadOp>(op, op.getMemRef(),
|
|
*resultOperands);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Apply the affine map from an 'affine.prefetch' operation to its operands,
|
|
/// and feed the results to a newly created 'memref.prefetch' operation (which
|
|
/// replaces the original 'affine.prefetch').
|
|
class AffinePrefetchLowering : public OpRewritePattern<AffinePrefetchOp> {
|
|
public:
|
|
using OpRewritePattern<AffinePrefetchOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffinePrefetchOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Expand affine map from 'affinePrefetchOp'.
|
|
SmallVector<Value, 8> indices(op.getMapOperands());
|
|
auto resultOperands =
|
|
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
|
|
if (!resultOperands)
|
|
return failure();
|
|
|
|
// Build memref.prefetch memref[expandedMap.results].
|
|
rewriter.replaceOpWithNewOp<memref::PrefetchOp>(
|
|
op, op.getMemref(), *resultOperands, op.getIsWrite(),
|
|
op.getLocalityHint(), op.getIsDataCache());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Apply the affine map from an 'affine.store' operation to its operands, and
|
|
/// feed the results to a newly created 'memref.store' operation (which replaces
|
|
/// the original 'affine.store').
|
|
class AffineStoreLowering : public OpRewritePattern<AffineStoreOp> {
|
|
public:
|
|
using OpRewritePattern<AffineStoreOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineStoreOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Expand affine map from 'affineStoreOp'.
|
|
SmallVector<Value, 8> indices(op.getMapOperands());
|
|
auto maybeExpandedMap =
|
|
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
|
|
if (!maybeExpandedMap)
|
|
return failure();
|
|
|
|
// Build memref.store valueToStore, memref[expandedMap.results].
|
|
rewriter.replaceOpWithNewOp<memref::StoreOp>(
|
|
op, op.getValueToStore(), op.getMemRef(), *maybeExpandedMap);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Apply the affine maps from an 'affine.dma_start' operation to each of their
|
|
/// respective map operands, and feed the results to a newly created
|
|
/// 'memref.dma_start' operation (which replaces the original
|
|
/// 'affine.dma_start').
|
|
class AffineDmaStartLowering : public OpRewritePattern<AffineDmaStartOp> {
|
|
public:
|
|
using OpRewritePattern<AffineDmaStartOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineDmaStartOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
SmallVector<Value, 8> operands(op.getOperands());
|
|
auto operandsRef = llvm::ArrayRef(operands);
|
|
|
|
// Expand affine map for DMA source memref.
|
|
auto maybeExpandedSrcMap = expandAffineMap(
|
|
rewriter, op.getLoc(), op.getSrcMap(),
|
|
operandsRef.drop_front(op.getSrcMemRefOperandIndex() + 1));
|
|
if (!maybeExpandedSrcMap)
|
|
return failure();
|
|
// Expand affine map for DMA destination memref.
|
|
auto maybeExpandedDstMap = expandAffineMap(
|
|
rewriter, op.getLoc(), op.getDstMap(),
|
|
operandsRef.drop_front(op.getDstMemRefOperandIndex() + 1));
|
|
if (!maybeExpandedDstMap)
|
|
return failure();
|
|
// Expand affine map for DMA tag memref.
|
|
auto maybeExpandedTagMap = expandAffineMap(
|
|
rewriter, op.getLoc(), op.getTagMap(),
|
|
operandsRef.drop_front(op.getTagMemRefOperandIndex() + 1));
|
|
if (!maybeExpandedTagMap)
|
|
return failure();
|
|
|
|
// Build memref.dma_start operation with affine map results.
|
|
rewriter.replaceOpWithNewOp<memref::DmaStartOp>(
|
|
op, op.getSrcMemRef(), *maybeExpandedSrcMap, op.getDstMemRef(),
|
|
*maybeExpandedDstMap, op.getNumElements(), op.getTagMemRef(),
|
|
*maybeExpandedTagMap, op.getStride(), op.getNumElementsPerStride());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Apply the affine map from an 'affine.dma_wait' operation tag memref,
|
|
/// and feed the results to a newly created 'memref.dma_wait' operation (which
|
|
/// replaces the original 'affine.dma_wait').
|
|
class AffineDmaWaitLowering : public OpRewritePattern<AffineDmaWaitOp> {
|
|
public:
|
|
using OpRewritePattern<AffineDmaWaitOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineDmaWaitOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Expand affine map for DMA tag memref.
|
|
SmallVector<Value, 8> indices(op.getTagIndices());
|
|
auto maybeExpandedTagMap =
|
|
expandAffineMap(rewriter, op.getLoc(), op.getTagMap(), indices);
|
|
if (!maybeExpandedTagMap)
|
|
return failure();
|
|
|
|
// Build memref.dma_wait operation with affine map results.
|
|
rewriter.replaceOpWithNewOp<memref::DmaWaitOp>(
|
|
op, op.getTagMemRef(), *maybeExpandedTagMap, op.getNumElements());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Apply the affine map from an 'affine.vector_load' operation to its operands,
|
|
/// and feed the results to a newly created 'vector.load' operation (which
|
|
/// replaces the original 'affine.vector_load').
|
|
class AffineVectorLoadLowering : public OpRewritePattern<AffineVectorLoadOp> {
|
|
public:
|
|
using OpRewritePattern<AffineVectorLoadOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineVectorLoadOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Expand affine map from 'affineVectorLoadOp'.
|
|
SmallVector<Value, 8> indices(op.getMapOperands());
|
|
auto resultOperands =
|
|
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
|
|
if (!resultOperands)
|
|
return failure();
|
|
|
|
// Build vector.load memref[expandedMap.results].
|
|
rewriter.replaceOpWithNewOp<vector::LoadOp>(
|
|
op, op.getVectorType(), op.getMemRef(), *resultOperands);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Apply the affine map from an 'affine.vector_store' operation to its
|
|
/// operands, and feed the results to a newly created 'vector.store' operation
|
|
/// (which replaces the original 'affine.vector_store').
|
|
class AffineVectorStoreLowering : public OpRewritePattern<AffineVectorStoreOp> {
|
|
public:
|
|
using OpRewritePattern<AffineVectorStoreOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AffineVectorStoreOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Expand affine map from 'affineVectorStoreOp'.
|
|
SmallVector<Value, 8> indices(op.getMapOperands());
|
|
auto maybeExpandedMap =
|
|
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
|
|
if (!maybeExpandedMap)
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<vector::StoreOp>(
|
|
op, op.getValueToStore(), op.getMemRef(), *maybeExpandedMap);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::populateAffineToStdConversionPatterns(RewritePatternSet &patterns) {
|
|
// clang-format off
|
|
patterns.add<
|
|
AffineApplyLowering,
|
|
AffineDmaStartLowering,
|
|
AffineDmaWaitLowering,
|
|
AffineLoadLowering,
|
|
AffineMinLowering,
|
|
AffineMaxLowering,
|
|
AffineParallelLowering,
|
|
AffinePrefetchLowering,
|
|
AffineStoreLowering,
|
|
AffineForLowering,
|
|
AffineIfLowering,
|
|
AffineYieldOpLowering>(patterns.getContext());
|
|
// clang-format on
|
|
}
|
|
|
|
void mlir::populateAffineToVectorConversionPatterns(
|
|
RewritePatternSet &patterns) {
|
|
// clang-format off
|
|
patterns.add<
|
|
AffineVectorLoadLowering,
|
|
AffineVectorStoreLowering>(patterns.getContext());
|
|
// clang-format on
|
|
}
|
|
|
|
namespace {
|
|
class LowerAffinePass
|
|
: public impl::ConvertAffineToStandardBase<LowerAffinePass> {
|
|
void runOnOperation() override {
|
|
RewritePatternSet patterns(&getContext());
|
|
populateAffineToStdConversionPatterns(patterns);
|
|
populateAffineToVectorConversionPatterns(patterns);
|
|
ConversionTarget target(getContext());
|
|
target.addLegalDialect<arith::ArithDialect, memref::MemRefDialect,
|
|
scf::SCFDialect, VectorDialect>();
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Lowers If and For operations within a function into their lower level CFG
|
|
/// equivalent blocks.
|
|
std::unique_ptr<Pass> mlir::createLowerAffinePass() {
|
|
return std::make_unique<LowerAffinePass>();
|
|
}
|