Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/ConstantFold.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

309 lines
12 KiB
C++

//===- ConstantFold.cpp - Implementation of constant folding on Linalg ops ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements constant folding on Linalg operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <optional>
using namespace mlir;
using namespace mlir::linalg;
namespace {
/// Base class for constant folding linalg.generic ops with N inputs, 1 output,
/// and permutation indexing maps.
///
/// `ConcreteType` should provide methods with signatures
///
/// ```c++
/// bool matchIndexingMaps(GenericOp genericOp) const;
/// RegionComputationFn getRegionComputeFn(GenericOp) const;
/// ```
///
/// The latter inspects the region and returns the computation inside as a
/// functor. The functor will be invoked with constant elements for all inputs
/// and should return the corresponding computed constant element for output.
template <typename ConcreteType>
class FoldConstantBase : public OpRewritePattern<GenericOp> {
public:
struct APIntOrFloat {
std::optional<APInt> apInt;
std::optional<APFloat> apFloat;
};
struct APIntOrFloatArray {
SmallVector<APInt> apInts;
SmallVector<APFloat> apFloats;
};
using RegionComputationFn =
std::function<APIntOrFloat(const APIntOrFloatArray &)>;
FoldConstantBase(MLIRContext *context, const ControlFusionFn &controlFn,
PatternBenefit benefit = 1)
: OpRewritePattern<GenericOp>(context, benefit), controlFn(controlFn) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
// Mixed and buffer sematics aren't supported.
if (!genericOp.hasTensorSemantics())
return failure();
// Only support ops generating one output for now.
if (genericOp.getNumDpsInits() != 1)
return failure();
auto outputType = dyn_cast<ShapedType>(genericOp.getResultTypes().front());
// Require the output types to be static given that we are generating
// constants.
if (!outputType || !outputType.hasStaticShape())
return failure();
if (!llvm::all_of(genericOp.getInputs(), [](Value input) {
return isa<ShapedType>(input.getType());
}))
return failure();
// Make sure all element types are the same.
auto getOperandElementType = [](Value value) {
return cast<ShapedType>(value.getType()).getElementType();
};
if (!llvm::all_equal(
llvm::map_range(genericOp->getOperands(), getOperandElementType)))
return failure();
// We can only handle the case where we have int/float elements.
auto elementType = outputType.getElementType();
if (!elementType.isIntOrFloat())
return failure();
// Require all indexing maps to be permutations for now. This is common and
// it simplifies input/output access greatly: we can do the data shuffling
// entirely in the compiler, without needing to turn all indices into
// Values, and then do affine apply on them, and then match back the
// constant again.
if (!llvm::all_of(genericOp.getIndexingMapsArray(),
[](AffineMap map) { return map.isPermutation(); }))
return failure();
for (OpOperand *operand : genericOp.getDpsInitOperands()) {
if (genericOp.payloadUsesValueFromOperand(operand))
return failure();
}
// Further check the indexing maps are okay for the ConcreteType.
if (!static_cast<const ConcreteType *>(this)->matchIndexingMaps(genericOp))
return failure();
// Defer to the concrete type to check the region and discover the
// computation inside.
RegionComputationFn computeFn =
static_cast<const ConcreteType *>(this)->getRegionComputeFn(genericOp);
if (!computeFn)
return failure();
// All inputs should be constants.
int numInputs = genericOp.getNumDpsInputs();
SmallVector<DenseIntOrFPElementsAttr> inputValues(numInputs);
for (const auto &en : llvm::enumerate(genericOp.getDpsInputOperands())) {
if (!matchPattern(en.value()->get(),
m_Constant(&inputValues[en.index()])))
return failure();
}
// Identified this as a potential candidate for folding. Now check the
// policy to see whether we are allowed to proceed.
for (OpOperand *operand : genericOp.getDpsInputOperands()) {
if (!controlFn(operand))
return failure();
}
auto linalgOp = cast<LinalgOp>(genericOp.getOperation());
SmallVector<int64_t, 4> loopBounds = linalgOp.computeStaticLoopSizes();
int64_t numElements = outputType.getNumElements();
// Use APInt/APFloat instead of Attribute here for constructing the output.
// This helps to avoid blowing up compiler memory usage: Attributes would
// unify the following cases but they have lifetime as the MLIRContext.
SmallVector<APInt> intOutputValues;
SmallVector<APFloat> fpOutputValues;
if (isa<FloatType>(elementType))
fpOutputValues.resize(numElements, APFloat(0.f));
else
intOutputValues.resize(numElements);
// Return the constant dim positions from the given permutation map.
auto getDimPositions = [](AffineMap map) {
SmallVector<unsigned> dims;
dims.reserve(map.getNumResults());
for (AffineExpr result : map.getResults()) {
dims.push_back(result.cast<AffineDimExpr>().getPosition());
}
return dims;
};
SmallVector<SmallVector<unsigned>> inputDims;
for (int i = 0; i < numInputs; ++i)
inputDims.push_back(getDimPositions(genericOp.getIndexingMapsArray()[i]));
auto outputDims = getDimPositions(genericOp.getIndexingMapsArray().back());
auto outputShape = outputType.getShape();
// Allocate small vectors for index delinearization. Initial values do not
// matter here as they will be overwritten later.
SmallVector<uint64_t> indices(loopBounds.size(), 0);
SmallVector<uint64_t> dstIndices(loopBounds.size(), 0);
SmallVector<SmallVector<uint64_t>> srcIndices(
numInputs, SmallVector<uint64_t>(loopBounds.size(), 0));
SmallVector<uint64_t> srcLinearIndices(numInputs, 0);
uint64_t dstLinearIndex = 0;
// Allocate spaces for compute function inputs. Initial values do not matter
// here as they will be overwritten later.
APIntOrFloatArray computeFnInputs;
auto inputShapes = llvm::to_vector<4>(
llvm::map_range(genericOp.getInputs(), [](Value value) {
return cast<ShapedType>(value.getType()).getShape();
}));
// Given a `linearIndex`, remap it to a linear index to access linalg op
// inputs/ouputs. This mutates `indices`, `srcIndices`, `dstIndices`,
// `srcLinearIndices`, `dstLinearIndex` in place.
auto computeRemappedLinearIndex = [&](int linearIndex) {
int totalCount = linearIndex;
for (int dim = loopBounds.size() - 1; dim >= 0; --dim) {
indices[dim] = totalCount % loopBounds[dim];
totalCount /= loopBounds[dim];
}
for (int dim = loopBounds.size() - 1; dim >= 0; --dim) {
for (int i = 0; i < numInputs; ++i)
srcIndices[i][dim] = indices[inputDims[i][dim]];
dstIndices[dim] = indices[outputDims[dim]];
}
dstLinearIndex = dstIndices.front();
for (int i = 0; i < numInputs; ++i)
srcLinearIndices[i] = srcIndices[i].front();
for (int dim = 1; dim < outputType.getRank(); ++dim) {
dstLinearIndex = dstLinearIndex * outputShape[dim] + dstIndices[dim];
for (int i = 0; i < numInputs; ++i)
srcLinearIndices[i] =
srcLinearIndices[i] * inputShapes[i][dim] + srcIndices[i][dim];
}
};
bool isFloat = isa<FloatType>(elementType);
if (isFloat) {
SmallVector<DenseElementsAttr::iterator_range<APFloat>> inFpRanges;
for (int i = 0; i < numInputs; ++i)
inFpRanges.push_back(inputValues[i].getValues<APFloat>());
computeFnInputs.apFloats.resize(numInputs, APFloat(0.f));
// Transpose the input constant. Because we don't know its rank in
// advance, we need to loop over the range [0, element count) and
// delinearize the index.
for (int linearIndex = 0; linearIndex < numElements; ++linearIndex) {
computeRemappedLinearIndex(linearIndex);
// Collect constant elements for all inputs at this loop iteration.
for (int i = 0; i < numInputs; ++i)
computeFnInputs.apFloats[i] = inFpRanges[i][srcLinearIndices[i]];
// Invoke the computation to get the corresponding constant output
// element.
fpOutputValues[dstLinearIndex] = *computeFn(computeFnInputs).apFloat;
}
} else {
SmallVector<DenseElementsAttr::iterator_range<APInt>> inIntRanges;
for (int i = 0; i < numInputs; ++i)
inIntRanges.push_back(inputValues[i].getValues<APInt>());
computeFnInputs.apInts.resize(numInputs);
// Transpose the input constant. Because we don't know its rank in
// advance, we need to loop over the range [0, element count) and
// delinearize the index.
for (int linearIndex = 0; linearIndex < numElements; ++linearIndex) {
computeRemappedLinearIndex(linearIndex);
// Collect constant elements for all inputs at this loop iteration.
for (int i = 0; i < numInputs; ++i)
computeFnInputs.apInts[i] = inIntRanges[i][srcLinearIndices[i]];
// Invoke the computation to get the corresponding constant output
// element.
intOutputValues[dstLinearIndex] = *computeFn(computeFnInputs).apInt;
}
}
DenseElementsAttr outputAttr =
isFloat ? DenseElementsAttr::get(outputType, fpOutputValues)
: DenseElementsAttr::get(outputType, intOutputValues);
rewriter.replaceOpWithNewOp<arith::ConstantOp>(genericOp, outputAttr);
return success();
}
private:
ControlFusionFn controlFn;
};
// Folds linalg.generic ops that are actually transposes on constant values.
struct FoldConstantTranspose : public FoldConstantBase<FoldConstantTranspose> {
using FoldConstantBase::FoldConstantBase;
bool matchIndexingMaps(GenericOp genericOp) const {
// We should have one input and one output.
return genericOp.getIndexingMapsArray().size() == 2;
}
RegionComputationFn getRegionComputeFn(GenericOp genericOp) const {
// Make sure the region only contains a yield op.
Block &body = genericOp.getRegion().front();
if (!llvm::hasSingleElement(body))
return nullptr;
auto yieldOp = dyn_cast<linalg::YieldOp>(body.getTerminator());
if (!yieldOp)
return nullptr;
// The yield op should return the block argument corresponds to the input.
for (Value yieldVal : yieldOp.getValues()) {
auto yieldArg = dyn_cast<BlockArgument>(yieldVal);
if (!yieldArg || yieldArg.getOwner() != &body)
return nullptr;
if (yieldArg.getArgNumber() != 0)
return nullptr;
}
// No computation; just return the orginal value.
return [](const APIntOrFloatArray &inputs) {
if (inputs.apFloats.empty())
return APIntOrFloat{inputs.apInts.front(), std::nullopt};
return APIntOrFloat{std::nullopt, inputs.apFloats.front()};
};
}
ControlFusionFn controlFn;
};
} // namespace
void mlir::linalg::populateConstantFoldLinalgOperations(
RewritePatternSet &patterns, const ControlFusionFn &controlFn) {
MLIRContext *context = patterns.getContext();
patterns.insert<FoldConstantTranspose>(context, controlFn);
}