Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

757 lines
30 KiB
C++

//===- DataLayoutPropagation.cpp -----------------------------------------===///
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/Debug.h"
#include <optional>
namespace mlir {
#define GEN_PASS_DEF_LINALGDATALAYOUTPROPAGATION
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::linalg;
#define DEBUG_TYPE "linalg-data-layout-propagation"
namespace {
static bool hasGatherSemantics(linalg::GenericOp genericOp) {
for (Operation &op : genericOp.getBody()->getOperations())
if (isa<tensor::ExtractOp, linalg::IndexOp>(op))
return true;
return false;
}
// The struct contains the infomation about mapping packing information to
// the iteration domain of Linalg ops.
struct PackInfo {
int64_t getNumTiledLoops() const { return tileToPointMapping.size(); };
// InnerDimsPos on iteration domain, which follows the order in pack ops.
SmallVector<int64_t> tiledDimsPos;
// The sizes of tiling data dimensions on iteration domain.
llvm::DenseMap<int64_t, OpFoldResult> domainDimAndTileMapping;
// The mapping from a dimension of iteration domain to the corresponding inner
// tiling dimension on iteration domain.
llvm::DenseMap<int64_t, int64_t> tileToPointMapping;
// The permutation of outer dims (on domain).
SmallVector<int64_t> outerDimsOnDomainPerm;
};
template <typename OpTy>
static FailureOr<PackInfo>
getPackingInfoFromOperand(OpOperand *opOperand, linalg::GenericOp genericOp,
OpTy packOrUnPackOp) {
static_assert(llvm::is_one_of<OpTy, tensor::PackOp, tensor::UnPackOp>::value,
"applies to only pack or unpack operations");
LLVM_DEBUG(
{ llvm::dbgs() << "--- Construct PackInfo From an operand ---\n"; });
AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
SmallVector<utils::IteratorType> iterators =
genericOp.getIteratorTypesArray();
PackInfo packInfo;
int64_t origNumDims = indexingMap.getNumDims();
SmallVector<AffineExpr> exprs(indexingMap.getResults());
ArrayRef<int64_t> innerDimsPos = packOrUnPackOp.getInnerDimsPos();
for (auto [index, innerDimPos, tileSize] :
llvm::zip_equal(llvm::seq<unsigned>(0, innerDimsPos.size()),
innerDimsPos, packOrUnPackOp.getMixedTiles())) {
auto expr = exprs[innerDimPos];
if (!expr.template isa<AffineDimExpr>())
return failure();
int64_t domainDimPos =
exprs[innerDimPos].template cast<AffineDimExpr>().getPosition();
if (!isParallelIterator(iterators[domainDimPos]))
return failure();
packInfo.tiledDimsPos.push_back(domainDimPos);
packInfo.domainDimAndTileMapping[domainDimPos] = tileSize;
packInfo.tileToPointMapping[domainDimPos] = origNumDims + index;
LLVM_DEBUG({
llvm::dbgs() << "map innerDimPos=" << innerDimPos
<< " to iteration dimension (d" << domainDimPos << ", d"
<< packInfo.tileToPointMapping[domainDimPos]
<< "), which has size=("
<< packInfo.domainDimAndTileMapping[domainDimPos] << ")\n";
});
}
// Bail out if a tiled dimension is present in a map but not as an affine dim
// expression.
auto areAllAffineDimExpr = [&](int dim) {
for (AffineMap map : indexingMaps) {
if (llvm::any_of(map.getResults(), [dim](AffineExpr expr) {
return expr.isFunctionOfDim(dim) && !expr.isa<AffineDimExpr>();
})) {
return false;
}
}
return true;
};
for (int64_t i : packInfo.tiledDimsPos)
if (!areAllAffineDimExpr(i))
return failure();
// Get the outer dims perm on the iteration domain. Start by identifying the
// set of domain dims affected by the outer permutation along with the
// permuted ordering for those dims. Then the full outer dims permutation can
// be constructed by replacing the affected dims with the permuted result in a
// numLoops-rank identity. e.g.
// outerDimsPerm = [1, 2, 0]
// indexingMap = (d0, d1, d2, d3, d4) -> (d1, d4, d3)
//
// permutedOuterDims = [4, 3, 1]
// outerDimsOnDomainPerm = [0, 4, 2, 3, 1]
//
// Non-affine dim expressions must not be permuted by the outer dims
// permutation.
SmallVector<int64_t> permutedOuterDims;
for (auto [index, dim] : llvm::enumerate(packOrUnPackOp.getOuterDimsPerm())) {
auto permutedExpr = indexingMap.getResult(dim);
if (auto dimExpr = permutedExpr.template dyn_cast<AffineDimExpr>()) {
permutedOuterDims.push_back(dimExpr.getPosition());
continue;
}
// TODO: Allow propagation with transposes on non affine dim expressions,
// e.g. d0 + d1 which implies transposing both dims simultaneously while
// maintaining the relative position between them.
if (static_cast<int64_t>(index) != dim)
return failure();
}
if (!permutedOuterDims.empty()) {
int64_t outerDimIndex = 0;
llvm::DenseSet<int64_t> permutedDomainDims(permutedOuterDims.begin(),
permutedOuterDims.end());
for (int i = 0, e = indexingMap.getNumDims(); i < e; i++)
packInfo.outerDimsOnDomainPerm.push_back(
permutedDomainDims.contains(i) ? permutedOuterDims[outerDimIndex++]
: i);
LLVM_DEBUG({
llvm::dbgs() << "map outer dimsDimsPerm to ";
for (auto dim : packInfo.outerDimsOnDomainPerm)
llvm::dbgs() << dim << " ";
llvm::dbgs() << "\n";
});
}
return packInfo;
}
static SmallVector<int64_t> computeOuterDims(ArrayRef<int64_t> perm,
ArrayRef<AffineExpr> exprs) {
// Compute `outer_dims_perm`. See example:
// current exprs : (d0, d1, d2, d3) -> (d2, d3)
// perm : [0, 3, 1, 2]
// First map d2, d3 with their position in the array as:
// currentPositionTileLoops: dim | pos
// d2 | 0
// d3 | 1
// then scan `perm` in order and get the `outer_dims_perm`
// to be used, here it would be [1, 0].
assert(!perm.empty() && "expect perm not to be empty");
assert(!exprs.empty() && "expect exprs not to be empty");
if (exprs.size() == 1)
return {};
SmallVector<int64_t> outerDimsPerm;
DenseMap<int64_t, int64_t> currentPositionTileLoops;
for (auto [pos, expr] : llvm::enumerate(exprs)) {
// Here we rely on the assumption that the outer dims permutation
// when propagating currently requires that non-affine dim expressions
// are not permuted, thus allowing the identity assignment below.
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
currentPositionTileLoops[dimExpr.getPosition()] = pos;
else
currentPositionTileLoops[pos] = pos;
}
for (int64_t loopIdx : perm) {
if (currentPositionTileLoops.count(loopIdx))
outerDimsPerm.push_back(currentPositionTileLoops.lookup(loopIdx));
}
return outerDimsPerm;
}
/// Returns a tuple for packed operand and indexing_map with the assumptions:
/// 1) The generic op is the producer of the pack op.
/// 2) The generic op has only one result.
/// If the operand is a scalar or packing dimensions are all irrelevant to the
/// operand, the operand and the updated indexing map will be returned.
/// Otherwise, it returns the packed operand and the updated indexing map. E.g.,
///
/// #map0 = affine_map<(d0, d1) -> (d0, d1)>
/// #map1 = affine_map<(d0, d1) -> (d0)>
/// #map2 = affine_map<(d0, d1) -> (d1)>
/// %0 = linalg.generic {indexing_maps = [#map1, #map2, #map0],
/// iterator_types = ["parallel", "parallel"]}
/// ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
/// outs(%init : tensor<?x?xf32>) {
/// ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
/// %4 = arith.addf %arg3, %arg4 : f32
/// linalg.yield %4 : f32
/// } -> tensor<?x?xf32>
/// %1 = tensor.pack %0
/// inner_dims_pos = [0, 1]
/// inner_tiles = [8, 2]
/// into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
///
/// Taking the first input operand as an example, the inner tile size of d1 is
/// 8. Thus, the below operation and `affine_map<(d0, d1, d2, d3)> ->
/// affine_map<(d1, d3)>` will be returned.
///
/// %pack = tensor.pack %arg0
/// inner_dims_pos = [0]
/// inner_tiles = [8]
/// into %init : tensor<?xf32> -> tensor<?x8xf32>
static std::tuple<Value, AffineMap>
getOrCreatePackedViewOfOperand(OpBuilder &b, Location loc, PackInfo packInfo,
GenericOp genericOp, OpOperand *opOperand) {
int64_t numOrigLoops = genericOp.getNumLoops();
int64_t numInnerLoops = packInfo.getNumTiledLoops();
int64_t numLoops = numOrigLoops + numInnerLoops;
AffineMap origIndexingMap = genericOp.getMatchingIndexingMap(opOperand);
llvm::DenseMap<int64_t, int64_t> domainDimToOperandDim;
SmallVector<AffineExpr> exprs(origIndexingMap.getResults());
// If the OpOperand is a scalar or a zero-rank tensor, no need to pack.
if (genericOp.isScalar(opOperand) || exprs.empty())
return std::make_tuple(opOperand->get(),
AffineMap::get(numLoops, 0, exprs, b.getContext()));
// Step 1. Construct the information of packing data dimensions; append inner
// dimensions to the indexing maps for the operand.
for (auto [index, expr] : llvm::enumerate(exprs)) {
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
int64_t dimPos = dimExpr.getPosition();
domainDimToOperandDim[dimPos] = index;
continue;
}
}
SmallVector<int64_t> innerDimsPos;
SmallVector<OpFoldResult> innerTileSizes;
for (auto dimPos : packInfo.tiledDimsPos) {
if (!domainDimToOperandDim.count(dimPos))
continue;
int64_t index = domainDimToOperandDim[dimPos];
innerTileSizes.push_back(packInfo.domainDimAndTileMapping[dimPos]);
innerDimsPos.push_back(index);
exprs.push_back(b.getAffineDimExpr(packInfo.tileToPointMapping[dimPos]));
}
// Step 2. Handle outer dim permutations.
SmallVector<int64_t> outerDimsPerm;
if (!packInfo.outerDimsOnDomainPerm.empty()) {
outerDimsPerm = computeOuterDims(packInfo.outerDimsOnDomainPerm, exprs);
// Step 2.1: Fold transpose into the linalg.generic.
SmallVector<int64_t> inversedOuterPerm =
invertPermutationVector(packInfo.outerDimsOnDomainPerm);
for (auto i : llvm::seq<unsigned>(0, origIndexingMap.getNumResults())) {
if (auto dimExpr = exprs[i].dyn_cast<AffineDimExpr>()) {
int64_t dimPos = dimExpr.getPosition();
exprs[i] = b.getAffineDimExpr(inversedOuterPerm[dimPos]);
continue;
}
assert(exprs[i].isa<AffineConstantExpr>() &&
"Attempted to permute non-constant and non-affine dim expression");
}
// Step 2.2: Undo the transposition on `exprs` and propagate the
// transposition on the pack using outerDimsPerm.
if (!outerDimsPerm.empty()) {
SmallVector<AffineExpr> auxVec = exprs;
for (const auto &en : enumerate(outerDimsPerm))
auxVec[en.index()] = exprs[en.value()];
exprs = auxVec;
}
}
auto indexingMap = AffineMap::get(numLoops, 0, exprs, b.getContext());
// The operand does not have dimensions that relates to pack op.
if (innerDimsPos.empty() && outerDimsPerm.empty())
return std::make_tuple(opOperand->get(), indexingMap);
auto empty = tensor::PackOp::createDestinationTensor(
b, loc, opOperand->get(), innerTileSizes, innerDimsPos, outerDimsPerm);
auto packedOperand = b.create<tensor::PackOp>(
loc, opOperand->get(), empty, innerDimsPos, innerTileSizes,
/*padding=*/std::nullopt, outerDimsPerm);
return std::make_tuple(packedOperand, indexingMap);
}
/// Pack a genericOp and return it.
static GenericOp packGenericOp(RewriterBase &rewriter, GenericOp genericOp,
Value dest, AffineMap packedOutIndexingMap,
const PackInfo &packInfo) {
Location loc = genericOp.getLoc();
SmallVector<Value> inputOperands;
SmallVector<AffineMap> indexingMaps;
for (OpOperand *inputOperand : genericOp.getDpsInputOperands()) {
auto [packedOperand, packedIndexingMap] = getOrCreatePackedViewOfOperand(
rewriter, loc, packInfo, genericOp, inputOperand);
inputOperands.push_back(packedOperand);
indexingMaps.push_back(packedIndexingMap);
}
int64_t numInnerLoops = packInfo.getNumTiledLoops();
SmallVector<utils::IteratorType> iterTypes =
genericOp.getIteratorTypesArray();
iterTypes.append(numInnerLoops, utils::IteratorType::parallel);
indexingMaps.push_back(packedOutIndexingMap);
auto newGenericOp = rewriter.create<linalg::GenericOp>(
loc, dest.getType(), inputOperands, dest, indexingMaps, iterTypes,
/*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
rewriter.cloneRegionBefore(genericOp.getRegion(), newGenericOp.getRegion(),
newGenericOp.getRegion().begin());
return newGenericOp;
}
/// Bubbles up tensor.pack op through a producer generic op. This
/// swap pack(generic) to generic(pack). The new generic op works on packed
/// domain; pack ops are created for input and output operands. E.g.,
///
/// #map0 = affine_map<(d0, d1) -> (d0, d1)>
/// %0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
/// %1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
/// %2 = tensor.empty(%0, %1) : tensor<?x?xf32>
/// %3 = linalg.generic {indexing_maps = [#map0, #map0],
/// iterator_types = ["parallel", "parallel"]}
/// ins(%arg0 : tensor<?x?xf32>)
/// outs(%2 : tensor<?x?xf32>) {
/// ^bb0(%arg3: f32, %arg4: f32):
/// %4 = arith.addf %arg3, %arg3 : f32
/// linalg.yield %4 : f32
/// } -> tensor<?x?xf32>
/// %4 = tensor.pack %3
/// inner_dims_pos = [0, 1]
/// inner_tiles = [8, 2]
/// into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
///
/// will be converted to
///
/// #map = affine_map<()[s0] -> (s0 ceildiv 8)>
/// #map1 = affine_map<()[s0] -> (s0 ceildiv 2)>
/// #map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
/// %dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
/// %dim_0 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
/// %0 = affine.apply #map()[%dim]
/// %1 = affine.apply #map1()[%dim_0]
/// %2 = tensor.empty(%0, %1) : tensor<?x?x8x2xf32>
/// %pack = tensor.pack %arg0
/// inner_dims_pos = [0, 1]
/// inner_tiles = [8, 2]
/// into %2 : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
/// %3 = linalg.generic {indexing_maps = [#map2, #map2],
/// iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
/// ins(%pack : tensor<?x?x8x2xf32>)
/// outs(%arg1 : tensor<?x?x8x2xf32>) {
/// ^bb0(%in: f32, %out: f32):
/// %4 = arith.addf %in, %in : f32
/// linalg.yield %4 : f32
/// } -> tensor<?x?x8x2xf32>
static FailureOr<GenericOp>
bubbleUpPackOpThroughGenericOp(RewriterBase &rewriter, tensor::PackOp packOp,
ControlPropagationFn controlFn) {
auto genericOp = packOp.getSource().getDefiningOp<GenericOp>();
if (!genericOp)
return failure();
// User controlled propagation function.
if (!controlFn(genericOp))
return failure();
// TODO: Enable propagation in the presence of linalg.index and
// tensor.extract, likely as a separate pattern as the pack information and
// propagation decision needs to be inferred from the region of the generic.
if (hasGatherSemantics(genericOp))
return failure();
// TODO: Relax the restriction. We are able to bubble up the pack op through
// multi-result generic op. It just needs more work.
if (genericOp.getNumResults() != 1)
return failure();
// Bail-out if the result of the generic has multiple uses, as bubbling up
// creates recomputation if the generic has multiple users.
// TODO: Enable the case where every use is an identical pack op as no
// recomputation is needed in that case.
if (!genericOp->getResult(0).hasOneUse())
return failure();
// We want to move the pack not the generic.
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(genericOp);
// We need to handle two cases:
// 1) The tensor.pack destination is a tensor.empty. If this is the case, we
// create a new tensor.empty to avoid breaking dominance, as we are moving the
// tensor.pack above the linalg.generic.
// 2) The destination is not a tensor.empty. In this case we can replace only
// if the destination of the tensor.pack dominates the linalg.generic.
Value packOpDest = packOp.getDest();
if (!packOpDest.hasOneUse())
return failure();
if (auto emptyOp = packOpDest.getDefiningOp<tensor::EmptyOp>()) {
packOpDest = rewriter.create<tensor::EmptyOp>(
genericOp->getLoc(), emptyOp.getMixedSizes(),
emptyOp.getType().getElementType());
} else {
DominanceInfo dom(genericOp);
if (!dom.properlyDominates(packOpDest, genericOp))
return failure();
}
// TODO: Add an option for allowing padding values. It could introduce
// undefined behavior if we unconditionally propagate pack op through all
// the ops. E.g., if the padding value is zero and there are division ops in
// a generic op. Some values of padding area could be NaN (0/0).
if (packOp.getPaddingValue())
return failure();
OpOperand *opOperand = genericOp.getDpsInitOperand(0);
auto packInfo = getPackingInfoFromOperand(opOperand, genericOp, packOp);
if (failed(packInfo))
return failure();
// Rebuild the indexing map for the corresponding init operand.
auto [packedOutOperand, packedOutIndexingMap] =
getOrCreatePackedViewOfOperand(rewriter, genericOp.getLoc(), *packInfo,
genericOp, opOperand);
// If the dps init operand of the generic is a tensor.empty forward the pack
// op destination.
Value dest = packedOutOperand;
if (auto initTensor = genericOp.getDpsInitOperand(0)
->get()
.getDefiningOp<tensor::EmptyOp>()) {
dest = packOpDest;
}
return packGenericOp(rewriter, genericOp, dest, packedOutIndexingMap,
*packInfo);
}
/// Folds pack(fill) into a single fill op if
/// 1. The pack op does not have padding value, or
/// 2. The filled value and padding value are the same.
static FailureOr<FillOp>
foldFillPackIntoFillOp(RewriterBase &rewriter, tensor::PackOp packOp,
ControlPropagationFn controlFn) {
auto fillOp = packOp.getSource().getDefiningOp<FillOp>();
if (!fillOp)
return failure();
// User controlled propagation function.
if (!controlFn(fillOp))
return failure();
if (auto paddingValue = packOp.getPaddingValue())
if (!isEqualConstantIntOrValue(paddingValue, fillOp.value()))
return failure();
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(fillOp);
Value packOpDest = packOp.getDest();
if (!packOpDest.hasOneUse())
return failure();
if (auto emptyOp = packOpDest.getDefiningOp<tensor::EmptyOp>()) {
packOpDest = tensor::PackOp::createDestinationTensor(
rewriter, fillOp.getLoc(), fillOp.getDpsInitOperand(0)->get(),
packOp.getMixedTiles(), packOp.getInnerDimsPos(),
packOp.getOuterDimsPerm());
} else {
DominanceInfo dom(fillOp);
if (!dom.properlyDominates(packOpDest, fillOp))
return failure();
}
Value fillDest = packOpDest;
return clone(rewriter, fillOp, packOpDest.getType(),
{fillOp.value(), fillDest});
}
/// Wrapper pattern that applies bubbleUpPackOpThroughGenericOp method.
struct BubbleUpPackOpThroughGenericOpPattern
: public OpRewritePattern<tensor::PackOp> {
public:
BubbleUpPackOpThroughGenericOpPattern(MLIRContext *context,
ControlPropagationFn fun)
: OpRewritePattern<tensor::PackOp>(context), controlFn(std::move(fun)) {}
LogicalResult matchAndRewrite(tensor::PackOp packOp,
PatternRewriter &rewriter) const override {
auto genericOp =
bubbleUpPackOpThroughGenericOp(rewriter, packOp, controlFn);
if (failed(genericOp))
return failure();
rewriter.replaceOp(packOp, genericOp->getResults());
return success();
}
private:
ControlPropagationFn controlFn;
};
/// Wrapper pattern that applies foldFillPackIntoFillOp method.
struct FoldFillPackIntoFillOpPattern : public OpRewritePattern<tensor::PackOp> {
public:
FoldFillPackIntoFillOpPattern(MLIRContext *context, ControlPropagationFn fun)
: OpRewritePattern<tensor::PackOp>(context), controlFn(std::move(fun)) {}
LogicalResult matchAndRewrite(tensor::PackOp packOp,
PatternRewriter &rewriter) const override {
auto fillOp = foldFillPackIntoFillOp(rewriter, packOp, controlFn);
if (failed(fillOp))
return failure();
rewriter.replaceOp(packOp, fillOp.value().result());
return success();
}
private:
ControlPropagationFn controlFn;
};
// TODO: Relax this restriction. We should unpack a generic op also
// in the presence of multiple unpack ops as producers.
/// Return the unpacked operand, if present, for the current generic op.
static FailureOr<OpOperand *> getUnPackedOperand(GenericOp genericOp) {
OpOperand *unPackedOperand = nullptr;
for (OpOperand &operand : genericOp->getOpOperands()) {
auto unPackOp = operand.get().getDefiningOp<tensor::UnPackOp>();
if (!unPackOp)
continue;
if (unPackedOperand)
return failure();
unPackedOperand = &operand;
}
if (!unPackedOperand)
return failure();
return unPackedOperand;
}
/// Push down a tensor.unpack op through a generic op.
/// The new generic op works on packed domain; pack ops are created for input
/// and output operands. A tensor.unpack op is inserted right after the packed
/// generic. E.g.
///
/// #map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
///
/// %arg0 = tensor<12x2x56x56x32xf32> // packed arg.
///
/// %0 = tensor.empty() : tensor<12x56x56x64xf32>
/// %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2]
/// inner_dims_pos = [3] inner_tiles = [32] into %0
/// %2 = linalg.generic {indexing_maps = [#map],
/// iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
/// outs(%1 : tensor<12x56x56x64xf32>) {
/// ^bb0(%out : f32):
/// linalg.yield %out : f32
/// } -> tensor<12x56x56x64xf32>
///
/// will be converted to
///
/// #map = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
///
/// %0 = tensor.empty() : tensor<12x56x56x64xf32>
/// %1 = linalg.generic {indexing_maps = [#map],
/// iterator_types = ["parallel", "parallel", "parallel",
/// "parallel", "parallel"]}
/// outs(%arg0 : tensor<12x2x56x56x32xf32>) {
/// ^bb0(%out : f32):
/// linalg.yield %out : f32
/// } -> tensor<12x2x56x56x32xf32>
/// %2 = tensor.unpack %1 outer_dims_perm = [0, 3, 1, 2]
/// inner_dims_pos = [3] inner_tiles = [32] into %0
///
static FailureOr<std::tuple<GenericOp, Value>>
pushDownUnPackOpThroughGenericOp(RewriterBase &rewriter, GenericOp genericOp) {
if (genericOp.getNumResults() != 1)
return failure();
if (hasGatherSemantics(genericOp))
return failure();
// Collect the unPacked operand, if present.
auto maybeUnPackedOperand = getUnPackedOperand(genericOp);
if (failed(maybeUnPackedOperand))
return failure();
OpOperand *unPackedOperand = *(maybeUnPackedOperand);
// Extract packing information.
tensor::UnPackOp producerUnPackOp =
unPackedOperand->get().getDefiningOp<tensor::UnPackOp>();
assert(producerUnPackOp && "expect a valid UnPackOp");
auto packInfo =
getPackingInfoFromOperand(unPackedOperand, genericOp, producerUnPackOp);
if (failed(packInfo))
return failure();
// Rebuild the indexing map for the corresponding init operand.
auto [packedOutOperand, packedOutIndexingMap] =
getOrCreatePackedViewOfOperand(rewriter, genericOp.getLoc(), *packInfo,
genericOp, genericOp.getDpsInitOperand(0));
auto destPack = packedOutOperand.getDefiningOp<tensor::PackOp>();
// If the dps init operand of the generic is a tensor.empty, do not pack it
// and forward the new tensor.empty as a destination.
Value dest = packedOutOperand;
if (auto initTensor = genericOp.getDpsInitOperand(0)
->get()
.getDefiningOp<tensor::EmptyOp>()) {
if (destPack)
dest = destPack.getDest();
}
// Pack the genericOp.
GenericOp newGenericOp =
packGenericOp(rewriter, genericOp, dest, packedOutIndexingMap, *packInfo);
Value newResult =
newGenericOp.getTiedOpResult(newGenericOp.getDpsInitOperand(0));
// If the output is unaffected, no need to unpack.
if (!destPack)
return std::make_tuple(newGenericOp, newResult);
auto mixedTiles = destPack.getMixedTiles();
auto innerDimsPos = destPack.getInnerDimsPos();
auto outerDimsPerm = destPack.getOuterDimsPerm();
// If the output type for the generic differs from the source
// unpack op, we need to create a new destination tensor. In the
// dynamic case we always need a new destination.
auto loc = genericOp.getLoc();
Value unPackDest = producerUnPackOp.getDest();
auto genericOutType =
cast<RankedTensorType>(genericOp.getDpsInitOperand(0)->get().getType());
if (producerUnPackOp.getDestType() != genericOutType ||
!genericOutType.hasStaticShape()) {
unPackDest = tensor::UnPackOp::createDestinationTensor(
rewriter, loc, newResult, mixedTiles, innerDimsPos, outerDimsPerm);
}
// Insert an unPackOp right after the packed generic.
Value unPackOpRes =
rewriter
.create<tensor::UnPackOp>(loc, newResult, unPackDest, innerDimsPos,
mixedTiles, outerDimsPerm)
.getResult();
return std::make_tuple(newGenericOp, unPackOpRes);
}
// Wrapper pattern that applies pushDownUnPackOpThroughGenericOp method.
struct PushDownUnPackOpThroughGenericOp : public OpRewritePattern<GenericOp> {
public:
PushDownUnPackOpThroughGenericOp(MLIRContext *context,
ControlPropagationFn fun)
: OpRewritePattern<GenericOp>(context), controlFn(std::move(fun)) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
if (!controlFn(genericOp))
return failure();
auto genericAndRepl = pushDownUnPackOpThroughGenericOp(rewriter, genericOp);
if (failed(genericAndRepl))
return failure();
rewriter.replaceOp(genericOp, std::get<1>(*genericAndRepl));
return success();
}
private:
ControlPropagationFn controlFn;
};
/// Propagate a tensor.unpack operation through a tensor.pad. The idea is to
/// add as many zero padding dimensions in `high` and `low` based on the number
/// of point loops.
struct PushDownUnPackThroughPadOp : public OpRewritePattern<tensor::PadOp> {
PushDownUnPackThroughPadOp(MLIRContext *context, ControlPropagationFn fun)
: OpRewritePattern<tensor::PadOp>(context), controlFn(std::move(fun)) {}
LogicalResult matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const override {
tensor::UnPackOp unpackOp =
padOp.getSource().getDefiningOp<tensor::UnPackOp>();
if (!unpackOp)
return failure();
if (!controlFn(padOp))
return failure();
Location loc = padOp.getLoc();
// Bail out if one of the padded dimension is a tiled one.
llvm::SmallBitVector paddedDims = padOp.getPaddedDims();
ArrayRef<int64_t> innerDimsPos = unpackOp.getInnerDimsPos();
llvm::SmallBitVector innerDims(paddedDims.size());
for (int64_t dim : innerDimsPos)
innerDims.flip(dim);
if (paddedDims.anyCommon(innerDims))
return failure();
Value paddingVal = padOp.getConstantPaddingValue();
if (!paddingVal)
return failure();
// If we have `outer_dims_perms` we need to adjust the padded dimensions.
ArrayRef<int64_t> outerDimsPerm = unpackOp.getOuterDimsPerm();
SmallVector<OpFoldResult> lowPad = padOp.getMixedLowPad();
SmallVector<OpFoldResult> highPad = padOp.getMixedHighPad();
if (!outerDimsPerm.empty()) {
applyPermutationToVector<OpFoldResult>(lowPad, outerDimsPerm);
applyPermutationToVector<OpFoldResult>(highPad, outerDimsPerm);
}
// Add zero padding for the point loops.
size_t pointLoopsSize = innerDimsPos.size();
lowPad.append(pointLoopsSize, rewriter.getIndexAttr(0));
highPad.append(pointLoopsSize, rewriter.getIndexAttr(0));
auto newPadOp = rewriter.create<tensor::PadOp>(
loc, /*result=*/Type(), unpackOp.getSource(), lowPad, highPad,
paddingVal, padOp.getNofold());
// Inject the tensor.unpack right after the packed padOp.
Value outputUnPack = rewriter.create<tensor::EmptyOp>(
loc, padOp.getResultType().getShape(),
padOp.getResultType().getElementType());
Value replacement = rewriter.create<tensor::UnPackOp>(
loc, newPadOp.getResult(), outputUnPack, innerDimsPos,
unpackOp.getMixedTiles(), outerDimsPerm);
rewriter.replaceOp(padOp, replacement);
return success();
}
private:
ControlPropagationFn controlFn;
};
} // namespace
void mlir::linalg::populateDataLayoutPropagationPatterns(
RewritePatternSet &patterns,
const ControlPropagationFn &controlPackUnPackPropagation) {
patterns.insert<BubbleUpPackOpThroughGenericOpPattern,
FoldFillPackIntoFillOpPattern,
PushDownUnPackOpThroughGenericOp, PushDownUnPackThroughPadOp>(
patterns.getContext(), controlPackUnPackPropagation);
}