Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/DecomposeLinalgOps.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

386 lines
16 KiB
C++

//===- DecomposeLinalgOps.cpp - Pattern to break up Linalg ops ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include <optional>
using namespace mlir;
using namespace mlir::linalg;
namespace {
/// Pattern to decompose a GenericOp that has more than two statements
/// into one GenericOp with the first statement (i.e. peeled operation), and
/// a second GenericOp with the remaining statements (i.e. residual operations).
/// - The result of the first GenericOp has the same shape as the iteration
/// space of the GenericOp. The body of the op yields as many values as the
/// original op plus all the results of the peeled operation.
/// - The second GenericOp has as many operands as the original operation plus
/// all the results of the first Generic Op. It has the same number of yields as
/// the original op.
/// - If the result of the peeled operation was yielded by the original
/// GenericOp the uses of the corresponding results will be replaced with the
/// result of the first GenericOp created.
///
/// Example
///
/// ```mlir
/// %result:2 = linalg.generic ... ins(%arg0, %arg1, %arg2 : ...)
/// outs(%init0, %init1 : ...) {
/// ^bb0(%b0: ... , %b1: ... , %b2: ... , %b3: ..., %b4: ...):
/// %0 = <s0> %b0, %b1 : ...
/// %1 = <s1> %0, %b2 : ...
/// linalg.yield %0, %1 : ...
/// } -> (..., ...)
/// return %result#0, %result#1
/// ```
///
/// gets split into
///
/// ```mlir
/// %init = tensor.empty ...
/// %op0:3 = linalg.generic ... ins(%arg0, %arg1, %arg2 : ...)
/// outs(%init0, %init1, %init : ...)
/// ^bb0(%b0: ... , %b1: ... , %b2: ... , %b3: ..., %b4: ..., %b5: ...):
/// %0 = <s0> %b0, %b1 : ...
/// linalg.yield %0, %..., %0 : ...
/// } -> (..., ..., ...)
/// %op1:2 = linalg.generic ... ins(%arg0, %arg1, %arg2, %op0#2 : ...)
/// outs(%init0, %init1 : ...) {
/// ^bb0(%b0: ... , %b1: ... , %b2: ... , %b3: ..., %b4: ..., %b5: ...):
/// %1 = <s1> %b3, %b2 : ...
/// linalg.yield %..., %1 : ...
/// } -> (..., ...)
/// return %op0#0, %op1#1
/// ```
///
/// After canonicalization this is expected to be
///
/// ```mlir
/// %init = tensor.empty ...
/// %op0 = linalg.generic ... ins(%arg0, %arg1, : ...)
/// outs(%init : ...)
/// ^bb0(%b0: ... , %b1: ... , %b2: ...):
/// %0 = <s0> %b0, %b1 : ...
/// linalg.yield %0 : ...
/// } -> ...
/// %op1 = linalg.generic ... ins(%arg2, %op0#2 : ...)
/// outs(%init1 : ...) {
/// ^bb0(%b0: ... , %b1: ... , %b2: ...):
/// %1 = <s1> %b1, %b0 : ...
/// linalg.yield %..., %1 : ...
/// } -> ...
/// return %op0, %op1
/// ```
struct DecomposeLinalgOp : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override;
private:
/// Helper method to create a generic op for the peeled scalar operation. The
/// created op has an empty region.
GenericOp createPeeledGenericOp(GenericOp genericOp,
PatternRewriter &rewriter) const;
/// Helper method to create a generic op for the residual scalar operation.
/// The created op has the same region as the original op.
GenericOp createResidualGenericOp(GenericOp genericOp,
GenericOp peeledGenericOp,
PatternRewriter &rewriter) const;
};
} // namespace
/// Helper method to compute the range of a generic op.
static SmallVector<OpFoldResult> getGenericOpLoopRange(OpBuilder &b,
GenericOp op) {
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
Location loc = op.getLoc();
auto allShapesSizes =
cast<LinalgOp>(op.getOperation()).createFlatListOfOperandDims(b, loc);
AffineMap map = op.getShapesToLoopsMap();
IRRewriter rewriter(b);
return affine::makeComposedFoldedMultiResultAffineApply(rewriter, loc, map,
allShapesSizes);
}
/// Helper method to permute the list of `values` based on the `map`.
SmallVector<OpFoldResult> permuteValues(ArrayRef<OpFoldResult> values,
AffineMap map) {
assert(map.isPermutation());
SmallVector<OpFoldResult> permutedValues(values.size());
for (const auto &position :
llvm::enumerate(llvm::map_range(map.getResults(), [](AffineExpr expr) {
return expr.cast<AffineDimExpr>().getPosition();
})))
permutedValues[position.value()] = values[position.index()];
return permutedValues;
}
/// Get zero value for an element type.
static Value getZero(OpBuilder &b, Location loc, Type elementType) {
assert(elementType.isIntOrIndexOrFloat() &&
"expected scalar type while computing zero value");
if (isa<IntegerType>(elementType))
return b.create<arith::ConstantIntOp>(loc, 0, elementType);
if (elementType.isIndex())
return b.create<arith::ConstantIndexOp>(loc, 0);
// Assume float.
auto floatType = cast<FloatType>(elementType);
return b.create<arith::ConstantFloatOp>(
loc, APFloat::getZero(floatType.getFloatSemantics()), floatType);
}
GenericOp
DecomposeLinalgOp::createPeeledGenericOp(GenericOp genericOp,
PatternRewriter &rewriter) const {
Block *body = genericOp.getBody();
Operation *peeledScalarOperation = &(*body->begin());
SmallVector<AffineMap> peeledGenericOpIndexingMaps =
genericOp.getIndexingMapsArray();
/// Compute the loop ranges for operation. This is the shape of the result of
/// the generic op for the peeled operation.
Location loc = genericOp.getLoc();
SmallVector<OpFoldResult> domain = getGenericOpLoopRange(rewriter, genericOp);
SmallVector<Value> newInitValues;
SmallVector<Type> newResultTypes;
// Add as many new results as the number of results of the peeled scalar op.
for (auto scalarOpResult : peeledScalarOperation->getResults()) {
// If the result is yielded by the original op, use the operand, indexing
// map and result type that correspond to the yielded value.
std::optional<unsigned> resultNumber;
for (auto *user : scalarOpResult.getUsers()) {
if (auto yieldOp = dyn_cast<YieldOp>(user)) {
// Find the first use of the `scalarOpResult` in the yield op.
for (OpOperand &yieldOperand : yieldOp->getOpOperands()) {
if (yieldOperand.get() == scalarOpResult) {
resultNumber = yieldOperand.getOperandNumber();
break;
}
}
assert(resultNumber && "unable to find use of a value in its user");
break;
}
}
if (resultNumber) {
newInitValues.push_back(
genericOp.getDpsInitOperand(*resultNumber)->get());
OpResult result = cast<OpResult>(genericOp.getResult(*resultNumber));
newResultTypes.push_back(result.getType());
peeledGenericOpIndexingMaps.push_back(
genericOp.getIndexingMapMatchingResult(result));
continue;
}
// Fall back path, use an `init_tensor` and identity indexing map.
AffineMap indexingMap = rewriter.getMultiDimIdentityMap(domain.size());
Value emptyTensor =
rewriter.create<tensor::EmptyOp>(loc, domain, scalarOpResult.getType());
newInitValues.push_back(emptyTensor);
newResultTypes.push_back(emptyTensor.getType());
peeledGenericOpIndexingMaps.push_back(indexingMap);
}
/// Create the peeled generic op with an empty body.
SmallVector<Value> outsOperands = genericOp.getOutputs();
outsOperands.append(newInitValues.begin(), newInitValues.end());
SmallVector<Type> resultTypes = llvm::to_vector(genericOp.getResultTypes());
resultTypes.append(newResultTypes.begin(), newResultTypes.end());
auto indexingMapAttr =
rewriter.getAffineMapArrayAttr(peeledGenericOpIndexingMaps);
return rewriter.create<GenericOp>(
loc, resultTypes, genericOp.getInputs(), outsOperands, indexingMapAttr,
genericOp.getIteratorTypes(), /*doc=*/nullptr, /*libraryCall=*/nullptr,
[](OpBuilder, Location, ValueRange) {});
}
GenericOp
DecomposeLinalgOp::createResidualGenericOp(GenericOp genericOp,
GenericOp peeledGenericOp,
PatternRewriter &rewriter) const {
/// Append all results from the peeledGenericOps as `ins` operand for the
/// residual generic op.
SmallVector<Value> residualGenericOpOperands = genericOp.getInputs();
unsigned origNumResults = genericOp.getNumResults();
unsigned peeledGenericOpNumResults = peeledGenericOp.getNumResults();
SmallVector<Value> extraIns;
for (auto resultNum :
llvm::seq<unsigned>(origNumResults, peeledGenericOpNumResults))
extraIns.push_back(peeledGenericOp->getResult(resultNum));
residualGenericOpOperands.append(extraIns);
/// Add indexing maps for the newly added operands. Use the same map
/// as those used for the new results of the peeledGenericOp.
auto indexingMaps = llvm::to_vector(
llvm::map_range(genericOp.getDpsInputOperands(), [&](OpOperand *operand) {
return genericOp.getMatchingIndexingMap(operand);
}));
for (auto resultNum :
llvm::seq<unsigned>(origNumResults, peeledGenericOpNumResults)) {
OpResult result = cast<OpResult>(peeledGenericOp.getResult(resultNum));
indexingMaps.push_back(
peeledGenericOp.getIndexingMapMatchingResult(result));
}
for (OpOperand *outOperand : genericOp.getDpsInitOperands())
indexingMaps.push_back(genericOp.getMatchingIndexingMap(outOperand));
auto indexingMapAttr = rewriter.getAffineMapArrayAttr(indexingMaps);
return rewriter.create<GenericOp>(
genericOp->getLoc(), genericOp->getResultTypes(),
residualGenericOpOperands, genericOp.getOutputs(), indexingMapAttr,
genericOp.getIteratorTypes(), /*doc=*/nullptr, /*libraryCall=*/nullptr,
[](OpBuilder, Location, ValueRange) {});
}
LogicalResult
DecomposeLinalgOp::matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const {
/// For now only match on operations where the iterator types are all parallel
if (genericOp.getNumParallelLoops() != genericOp.getNumLoops()) {
return rewriter.notifyMatchFailure(genericOp,
"unhandled decomposition of operation "
"with non-parallel iterator types");
}
// TODO: this could be generalized to handle `linalg.generic` with buffer
// operands too but requires allocation for intermediates. Punt on this for
// now.
if (!genericOp.hasTensorSemantics()) {
return rewriter.notifyMatchFailure(
genericOp, "only operations with tensor semantics are handled");
}
if (llvm::any_of(genericOp.getDpsInitOperands(), [&](OpOperand *outOperand) {
return !genericOp.getMatchingIndexingMap(outOperand).isPermutation();
})) {
return rewriter.notifyMatchFailure(
genericOp, "unhandled decomposition of generic op with out operand not "
"accessed using a permutation");
}
/// If the op has only a single statement (apart from the yield), do nothing.
Block *body = genericOp.getBody();
if (body->getOperations().size() <= 2) {
return rewriter.notifyMatchFailure(genericOp,
"operation has less than 3 statements");
}
/// Check that the peeled statement has a scalar element type.
if (llvm::any_of(body->getOperations().begin()->getResultTypes(),
[](Type t) { return !t.isIntOrIndexOrFloat(); })) {
return rewriter.notifyMatchFailure(
&(*body->getOperations().begin()),
"expected return type to be only int, index or float");
}
GenericOp peeledGenericOp = createPeeledGenericOp(genericOp, rewriter);
GenericOp residualGenericOp =
createResidualGenericOp(genericOp, peeledGenericOp, rewriter);
/// Move the first statement of the original operation into the body of the
/// generic op for the peeled operation.
Block *peeledGenericOpBody = peeledGenericOp.getBody();
Block *residualGenericOpBody = residualGenericOp.getBody();
assert(peeledGenericOpBody->empty() && residualGenericOpBody->empty() &&
"expected split generic ops to have empty region");
peeledGenericOpBody->getOperations().splice(
peeledGenericOpBody->begin(), body->getOperations(), body->begin());
residualGenericOpBody->getOperations().splice(residualGenericOpBody->begin(),
body->getOperations());
Operation *peeledScalarOperation = &(*peeledGenericOpBody->begin());
auto *yieldOp = residualGenericOpBody->getTerminator();
{
// Yield all the result of the peeled scalar operation.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPointToEnd(peeledGenericOpBody);
SmallVector<Value> yieldedVals;
for (auto origYield : yieldOp->getOperands()) {
if (origYield.getDefiningOp() == peeledScalarOperation) {
yieldedVals.push_back(origYield);
} else {
yieldedVals.push_back(
getZero(rewriter, genericOp.getLoc(), origYield.getType()));
}
}
yieldedVals.append(llvm::to_vector(
llvm::map_range(peeledScalarOperation->getResults(),
[](OpResult opr) -> Value { return opr; })));
rewriter.create<YieldOp>(genericOp.getLoc(), yieldedVals);
}
/// In the split operations, replace block arguments uses that refer to
/// original operation to the block arguments of the newly created operation.
unsigned origNumInputs = genericOp.getNumDpsInputs();
for (const auto &inputBlockArg :
llvm::enumerate(genericOp.getBody()->getArguments())) {
Value residualOpReplacementArg =
residualGenericOpBody->getArgument(inputBlockArg.index());
rewriter.replaceUsesWithIf(
inputBlockArg.value(), residualOpReplacementArg, [&](OpOperand &use) {
return use.getOwner()->getBlock() == residualGenericOpBody;
});
Value peeledOpReplacementArg =
peeledGenericOpBody->getArgument(inputBlockArg.index());
rewriter.replaceUsesWithIf(
inputBlockArg.value(), peeledOpReplacementArg, [&](OpOperand &use) {
return use.getOwner()->getBlock() == peeledGenericOpBody;
});
}
/// Before fixing up the residual operation, track what values are yielded. If
/// any of those are from the peeled scalar operation, the uses of the
/// corresponding result have to be remapped to result of the generic op for
/// the peeled operation.
SmallVector<Value> replacements;
for (const auto &yieldValue : llvm::enumerate(yieldOp->getOperands())) {
OpResult opr = dyn_cast<OpResult>(yieldValue.value());
if (!opr || opr.getOwner() != peeledScalarOperation)
replacements.push_back(residualGenericOp.getResult(yieldValue.index()));
else
replacements.push_back(peeledGenericOp->getResult(yieldValue.index()));
}
/// Update all uses of the peeled scalar operation results in the residual op
/// to the newly added arguments.
{
SmallVector<Value> scalarReplacements;
unsigned peeledScalarOpNumResults = peeledScalarOperation->getNumResults();
scalarReplacements.reserve(peeledScalarOpNumResults);
for (auto num : llvm::seq<unsigned>(0, peeledScalarOpNumResults))
scalarReplacements.push_back(
residualGenericOpBody->getArgument(num + origNumInputs));
bool allUsesReplaced = false;
rewriter.replaceOpWithinBlock(peeledScalarOperation, scalarReplacements,
residualGenericOpBody, &allUsesReplaced);
assert(!allUsesReplaced &&
"peeled scalar operation is erased when it wasnt expected to be");
}
// Replace the original operation
rewriter.replaceOp(genericOp, replacements);
return success();
}
void mlir::linalg::populateDecomposeLinalgOpsPattern(
RewritePatternSet &patterns, bool removeDeadArgsAndResults) {
patterns.insert<DecomposeLinalgOp>(patterns.getContext());
// Add the patterns to clean up the dead operands and results.
if (removeDeadArgsAndResults)
populateEraseUnusedOperandsAndResultsPatterns(patterns);
}