Files
clang-p2996/mlir/lib/Dialect/AMDGPU/Transforms/TransferReadToLoad.cpp
Zhuoran Yin ea03bdee70 [MLIR][AMDGPU] Adding Vector transfer_read to load rewrite pattern (#131803)
This PR adds the Vector transfer_read to load rewrite pattern. The
pattern creates a transfer read op lowering. A vector trasfer read op
will be lowered to a combination of `vector.load`, `arith.select` and
`vector.broadcast` if:
 - The transfer op is masked.
 - The memref is in buffer address space.
 - Other conditions introduced from `TransferReadToVectorLoadLowering`

The motivation of this PR is due to the lack of support of masked load
from amdgpu backend. `llvm.intr.masked.load` lower to a series of
conditional scalar loads refer to (`scalarize-masked-mem-intrin` pass).
This PR will make it possible for masked transfer_read to be lowered
towards buffer load with bounds check, allowing a more optimized global
load accessing pattern compared with existing implementation of
`llvm.intr.masked.load` on vectors.
2025-03-21 08:42:04 -04:00

155 lines
6.2 KiB
C++

//===- TransferReadToLoad.cpp - Lowers masked transfer read to load -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/AMDGPU/Transforms/Passes.h"
#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/WalkPatternRewriteDriver.h"
namespace mlir::amdgpu {
#define GEN_PASS_DEF_AMDGPUTRANSFERREADTOLOADPASS
#include "mlir/Dialect/AMDGPU/Transforms/Passes.h.inc"
} // namespace mlir::amdgpu
using namespace mlir;
using namespace mlir::amdgpu;
/// This pattern supports lowering of:
/// `vector.transfer_read` to a combination of `vector.load`, `arith.select` and
/// `vector.broadcast` if all of the following hold:
/// - The transfer op is masked.
/// - The memref is in buffer address space.
/// - Stride of most minor memref dimension must be 1.
/// - Out-of-bounds masking is not required.
/// - If the memref's element type is a vector type then it coincides with the
/// result type.
/// - The permutation map doesn't perform permutation (broadcasting is allowed).
/// Note: those conditions mostly come from TransferReadToVectorLoadLowering
/// pass.
static LogicalResult transferPreconditions(
PatternRewriter &rewriter, VectorTransferOpInterface xferOp,
bool &requiresBroadcasting, VectorType &unbroadcastedVectorType) {
if (!xferOp.getMask())
return rewriter.notifyMatchFailure(xferOp, "Only support masked transfer");
// Permutations are handled by VectorToSCF or
// populateVectorTransferPermutationMapLoweringPatterns.
// We let the 0-d corner case pass-through as it is supported.
SmallVector<unsigned> broadcastedDims;
if (!xferOp.getPermutationMap().isMinorIdentityWithBroadcasting(
&broadcastedDims))
return rewriter.notifyMatchFailure(xferOp, "not minor identity + bcast");
auto memRefType = dyn_cast<MemRefType>(xferOp.getShapedType());
if (!memRefType)
return rewriter.notifyMatchFailure(xferOp, "not a memref source");
Attribute addrSpace = memRefType.getMemorySpace();
if (!addrSpace || !dyn_cast<amdgpu::AddressSpaceAttr>(addrSpace))
return rewriter.notifyMatchFailure(xferOp, "no address space");
if (dyn_cast<amdgpu::AddressSpaceAttr>(addrSpace).getValue() !=
amdgpu::AddressSpace::FatRawBuffer)
return rewriter.notifyMatchFailure(xferOp, "not in buffer address space");
// Non-unit strides are handled by VectorToSCF.
if (!memRefType.isLastDimUnitStride())
return rewriter.notifyMatchFailure(xferOp, "!= 1 stride needs VectorToSCF");
// If there is broadcasting involved then we first load the unbroadcasted
// vector, and then broadcast it with `vector.broadcast`.
ArrayRef<int64_t> vectorShape = xferOp.getVectorType().getShape();
SmallVector<int64_t> unbroadcastedVectorShape(vectorShape);
for (unsigned i : broadcastedDims)
unbroadcastedVectorShape[i] = 1;
unbroadcastedVectorType = xferOp.getVectorType().cloneWith(
unbroadcastedVectorShape, xferOp.getVectorType().getElementType());
requiresBroadcasting = !broadcastedDims.empty();
// `vector.load` supports vector types as memref's elements only when the
// resulting vector type is the same as the element type.
auto memrefElTy = memRefType.getElementType();
if (isa<VectorType>(memrefElTy) && memrefElTy != unbroadcastedVectorType)
return rewriter.notifyMatchFailure(xferOp, "incompatible element type");
// Otherwise, element types of the memref and the vector must match.
if (!isa<VectorType>(memrefElTy) &&
memrefElTy != xferOp.getVectorType().getElementType())
return rewriter.notifyMatchFailure(xferOp, "non-matching element type");
// Out-of-bounds dims are handled by MaterializeTransferMask.
if (xferOp.hasOutOfBoundsDim())
return rewriter.notifyMatchFailure(xferOp, "out-of-bounds needs mask");
if (xferOp.getVectorType().getRank() != 1)
// vector.maskedload operates on 1-D vectors.
return rewriter.notifyMatchFailure(
xferOp, "vector type is not rank 1, can't create masked load, needs "
"VectorToSCF");
return success();
}
namespace {
struct TransferReadLowering final : OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
PatternRewriter &rewriter) const override {
bool requiresBroadcasting = false;
VectorType unbroadcastedVectorType;
if (failed(transferPreconditions(rewriter, readOp, requiresBroadcasting,
unbroadcastedVectorType))) {
return failure();
}
Location loc = readOp.getLoc();
Value fill = rewriter.create<vector::SplatOp>(loc, unbroadcastedVectorType,
readOp.getPadding());
Value load = rewriter.create<vector::LoadOp>(
loc, unbroadcastedVectorType, readOp.getSource(), readOp.getIndices());
Value res = rewriter.create<arith::SelectOp>(loc, unbroadcastedVectorType,
readOp.getMask(), load, fill);
// Insert a broadcasting op if required.
if (requiresBroadcasting) {
res = rewriter.create<vector::BroadcastOp>(loc, readOp.getVectorType(),
res);
}
rewriter.replaceOp(readOp, res);
return success();
}
};
} // namespace
void mlir::amdgpu::populateAmdgpuTransferReadToLoadPatterns(
RewritePatternSet &patterns) {
patterns.add<TransferReadLowering>(patterns.getContext());
}
struct AmdgpuTransferReadToLoadPass final
: amdgpu::impl::AmdgpuTransferReadToLoadPassBase<
AmdgpuTransferReadToLoadPass> {
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
populateAmdgpuTransferReadToLoadPatterns(patterns);
walkAndApplyPatterns(getOperation(), std::move(patterns));
}
};