Files
clang-p2996/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp
Peter Collingbourne a0f371a106 Bitcode: Add a string table to the bitcode format.
Add a top-level STRTAB block containing a string table blob, and start storing
strings for module codes FUNCTION, GLOBALVAR, ALIAS, IFUNC and COMDAT in
the string table.

This change allows us to share names between globals and comdats as well
as between modules, and improves the efficiency of loading bitcode files by
no longer using a bit encoding for symbol names. Once we start writing the
irsymtab to the bitcode file we will also be able to share strings between
it and the module.

On my machine, link time for Chromium for Linux with ThinLTO decreases by
about 7% for no-op incremental builds or about 1% for full builds. Total
bitcode file size decreases by about 3%.

As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2017-April/111732.html

Differential Revision: https://reviews.llvm.org/D31838

llvm-svn: 300464
2017-04-17 17:51:36 +00:00

468 lines
16 KiB
C++

//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass prepares a module containing type metadata for ThinLTO by splitting
// it into regular and thin LTO parts if possible, and writing both parts to
// a multi-module bitcode file. Modules that do not contain type metadata are
// written unmodified as a single module.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/Utils/Cloning.h"
using namespace llvm;
namespace {
// Produce a unique identifier for this module by taking the MD5 sum of the
// names of the module's strong external symbols. This identifier is
// normally guaranteed to be unique, or the program would fail to link due to
// multiply defined symbols.
//
// If the module has no strong external symbols (such a module may still have a
// semantic effect if it performs global initialization), we cannot produce a
// unique identifier for this module, so we return the empty string, which
// causes the entire module to be written as a regular LTO module.
std::string getModuleId(Module *M) {
MD5 Md5;
bool ExportsSymbols = false;
for (auto &GV : M->global_values()) {
if (GV.isDeclaration() || GV.getName().startswith("llvm.") ||
!GV.hasExternalLinkage())
continue;
ExportsSymbols = true;
Md5.update(GV.getName());
Md5.update(ArrayRef<uint8_t>{0});
}
if (!ExportsSymbols)
return "";
MD5::MD5Result R;
Md5.final(R);
SmallString<32> Str;
MD5::stringifyResult(R, Str);
return ("$" + Str).str();
}
// Promote each local-linkage entity defined by ExportM and used by ImportM by
// changing visibility and appending the given ModuleId.
void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId) {
DenseMap<const Comdat *, Comdat *> RenamedComdats;
for (auto &ExportGV : ExportM.global_values()) {
if (!ExportGV.hasLocalLinkage())
continue;
auto Name = ExportGV.getName();
GlobalValue *ImportGV = ImportM.getNamedValue(Name);
if (!ImportGV || ImportGV->use_empty())
continue;
std::string NewName = (Name + ModuleId).str();
if (const auto *C = ExportGV.getComdat())
if (C->getName() == Name)
RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
ExportGV.setName(NewName);
ExportGV.setLinkage(GlobalValue::ExternalLinkage);
ExportGV.setVisibility(GlobalValue::HiddenVisibility);
ImportGV->setName(NewName);
ImportGV->setVisibility(GlobalValue::HiddenVisibility);
}
if (!RenamedComdats.empty())
for (auto &GO : ExportM.global_objects())
if (auto *C = GO.getComdat()) {
auto Replacement = RenamedComdats.find(C);
if (Replacement != RenamedComdats.end())
GO.setComdat(Replacement->second);
}
}
// Promote all internal (i.e. distinct) type ids used by the module by replacing
// them with external type ids formed using the module id.
//
// Note that this needs to be done before we clone the module because each clone
// will receive its own set of distinct metadata nodes.
void promoteTypeIds(Module &M, StringRef ModuleId) {
DenseMap<Metadata *, Metadata *> LocalToGlobal;
auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
Metadata *MD =
cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
Metadata *&GlobalMD = LocalToGlobal[MD];
if (!GlobalMD) {
std::string NewName =
(to_string(LocalToGlobal.size()) + ModuleId).str();
GlobalMD = MDString::get(M.getContext(), NewName);
}
CI->setArgOperand(ArgNo,
MetadataAsValue::get(M.getContext(), GlobalMD));
}
};
if (Function *TypeTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
for (const Use &U : TypeTestFunc->uses()) {
auto CI = cast<CallInst>(U.getUser());
ExternalizeTypeId(CI, 1);
}
}
if (Function *TypeCheckedLoadFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
for (const Use &U : TypeCheckedLoadFunc->uses()) {
auto CI = cast<CallInst>(U.getUser());
ExternalizeTypeId(CI, 2);
}
}
for (GlobalObject &GO : M.global_objects()) {
SmallVector<MDNode *, 1> MDs;
GO.getMetadata(LLVMContext::MD_type, MDs);
GO.eraseMetadata(LLVMContext::MD_type);
for (auto MD : MDs) {
auto I = LocalToGlobal.find(MD->getOperand(1));
if (I == LocalToGlobal.end()) {
GO.addMetadata(LLVMContext::MD_type, *MD);
continue;
}
GO.addMetadata(
LLVMContext::MD_type,
*MDNode::get(M.getContext(),
ArrayRef<Metadata *>{MD->getOperand(0), I->second}));
}
}
}
// Drop unused globals, and drop type information from function declarations.
// FIXME: If we made functions typeless then there would be no need to do this.
void simplifyExternals(Module &M) {
FunctionType *EmptyFT =
FunctionType::get(Type::getVoidTy(M.getContext()), false);
for (auto I = M.begin(), E = M.end(); I != E;) {
Function &F = *I++;
if (F.isDeclaration() && F.use_empty()) {
F.eraseFromParent();
continue;
}
if (!F.isDeclaration() || F.getFunctionType() == EmptyFT)
continue;
Function *NewF =
Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M);
NewF->setVisibility(F.getVisibility());
NewF->takeName(&F);
F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
F.eraseFromParent();
}
for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
GlobalVariable &GV = *I++;
if (GV.isDeclaration() && GV.use_empty()) {
GV.eraseFromParent();
continue;
}
}
}
void filterModule(
Module *M, function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
for (Module::alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E;) {
GlobalAlias *GA = &*I++;
if (ShouldKeepDefinition(GA))
continue;
GlobalObject *GO;
if (GA->getValueType()->isFunctionTy())
GO = Function::Create(cast<FunctionType>(GA->getValueType()),
GlobalValue::ExternalLinkage, "", M);
else
GO = new GlobalVariable(
*M, GA->getValueType(), false, GlobalValue::ExternalLinkage,
(Constant *)nullptr, "", (GlobalVariable *)nullptr,
GA->getThreadLocalMode(), GA->getType()->getAddressSpace());
GO->takeName(GA);
GA->replaceAllUsesWith(GO);
GA->eraseFromParent();
}
for (Function &F : *M) {
if (ShouldKeepDefinition(&F))
continue;
F.deleteBody();
F.setComdat(nullptr);
F.clearMetadata();
}
for (GlobalVariable &GV : M->globals()) {
if (ShouldKeepDefinition(&GV))
continue;
GV.setInitializer(nullptr);
GV.setLinkage(GlobalValue::ExternalLinkage);
GV.setComdat(nullptr);
GV.clearMetadata();
}
}
void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
if (auto *F = dyn_cast<Function>(C))
return Fn(F);
if (isa<GlobalValue>(C))
return;
for (Value *Op : C->operands())
forEachVirtualFunction(cast<Constant>(Op), Fn);
}
// If it's possible to split M into regular and thin LTO parts, do so and write
// a multi-module bitcode file with the two parts to OS. Otherwise, write only a
// regular LTO bitcode file to OS.
void splitAndWriteThinLTOBitcode(
raw_ostream &OS, raw_ostream *ThinLinkOS,
function_ref<AAResults &(Function &)> AARGetter, Module &M) {
std::string ModuleId = getModuleId(&M);
if (ModuleId.empty()) {
// We couldn't generate a module ID for this module, just write it out as a
// regular LTO module.
WriteBitcodeToFile(&M, OS);
if (ThinLinkOS)
// We don't have a ThinLTO part, but still write the module to the
// ThinLinkOS if requested so that the expected output file is produced.
WriteBitcodeToFile(&M, *ThinLinkOS);
return;
}
promoteTypeIds(M, ModuleId);
// Returns whether a global has attached type metadata. Such globals may
// participate in CFI or whole-program devirtualization, so they need to
// appear in the merged module instead of the thin LTO module.
auto HasTypeMetadata = [&](const GlobalObject *GO) {
SmallVector<MDNode *, 1> MDs;
GO->getMetadata(LLVMContext::MD_type, MDs);
return !MDs.empty();
};
// Collect the set of virtual functions that are eligible for virtual constant
// propagation. Each eligible function must not access memory, must return
// an integer of width <=64 bits, must take at least one argument, must not
// use its first argument (assumed to be "this") and all arguments other than
// the first one must be of <=64 bit integer type.
//
// Note that we test whether this copy of the function is readnone, rather
// than testing function attributes, which must hold for any copy of the
// function, even a less optimized version substituted at link time. This is
// sound because the virtual constant propagation optimizations effectively
// inline all implementations of the virtual function into each call site,
// rather than using function attributes to perform local optimization.
std::set<const Function *> EligibleVirtualFns;
// If any member of a comdat lives in MergedM, put all members of that
// comdat in MergedM to keep the comdat together.
DenseSet<const Comdat *> MergedMComdats;
for (GlobalVariable &GV : M.globals())
if (HasTypeMetadata(&GV)) {
if (const auto *C = GV.getComdat())
MergedMComdats.insert(C);
forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
auto *RT = dyn_cast<IntegerType>(F->getReturnType());
if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
!F->arg_begin()->use_empty())
return;
for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
if (!ArgT || ArgT->getBitWidth() > 64)
return;
}
if (computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
EligibleVirtualFns.insert(F);
});
}
ValueToValueMapTy VMap;
std::unique_ptr<Module> MergedM(
CloneModule(&M, VMap, [&](const GlobalValue *GV) -> bool {
if (const auto *C = GV->getComdat())
if (MergedMComdats.count(C))
return true;
if (auto *F = dyn_cast<Function>(GV))
return EligibleVirtualFns.count(F);
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
return HasTypeMetadata(GVar);
return false;
}));
StripDebugInfo(*MergedM);
for (Function &F : *MergedM)
if (!F.isDeclaration()) {
// Reset the linkage of all functions eligible for virtual constant
// propagation. The canonical definitions live in the thin LTO module so
// that they can be imported.
F.setLinkage(GlobalValue::AvailableExternallyLinkage);
F.setComdat(nullptr);
}
// Remove all globals with type metadata, globals with comdats that live in
// MergedM, and aliases pointing to such globals from the thin LTO module.
filterModule(&M, [&](const GlobalValue *GV) {
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
if (HasTypeMetadata(GVar))
return false;
if (const auto *C = GV->getComdat())
if (MergedMComdats.count(C))
return false;
return true;
});
promoteInternals(*MergedM, M, ModuleId);
promoteInternals(M, *MergedM, ModuleId);
simplifyExternals(*MergedM);
// FIXME: Try to re-use BSI and PFI from the original module here.
ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, nullptr);
SmallVector<char, 0> Buffer;
BitcodeWriter W(Buffer);
// Save the module hash produced for the full bitcode, which will
// be used in the backends, and use that in the minimized bitcode
// produced for the full link.
ModuleHash ModHash = {{0}};
W.writeModule(&M, /*ShouldPreserveUseListOrder=*/false, &Index,
/*GenerateHash=*/true, &ModHash);
W.writeModule(MergedM.get());
W.writeStrtab();
OS << Buffer;
// If a minimized bitcode module was requested for the thin link,
// strip the debug info (the merged module was already stripped above)
// and write it to the given OS.
if (ThinLinkOS) {
Buffer.clear();
BitcodeWriter W2(Buffer);
StripDebugInfo(M);
W2.writeModule(&M, /*ShouldPreserveUseListOrder=*/false, &Index,
/*GenerateHash=*/false, &ModHash);
W2.writeModule(MergedM.get());
W2.writeStrtab();
*ThinLinkOS << Buffer;
}
}
// Returns whether this module needs to be split because it uses type metadata.
bool requiresSplit(Module &M) {
SmallVector<MDNode *, 1> MDs;
for (auto &GO : M.global_objects()) {
GO.getMetadata(LLVMContext::MD_type, MDs);
if (!MDs.empty())
return true;
}
return false;
}
void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
function_ref<AAResults &(Function &)> AARGetter,
Module &M, const ModuleSummaryIndex *Index) {
// See if this module has any type metadata. If so, we need to split it.
if (requiresSplit(M))
return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
// Otherwise we can just write it out as a regular module.
// Save the module hash produced for the full bitcode, which will
// be used in the backends, and use that in the minimized bitcode
// produced for the full link.
ModuleHash ModHash = {{0}};
WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
/*GenerateHash=*/true, &ModHash);
// If a minimized bitcode module was requested for the thin link,
// strip the debug info and write it to the given OS.
if (ThinLinkOS) {
StripDebugInfo(M);
WriteBitcodeToFile(&M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
Index,
/*GenerateHash=*/false, &ModHash);
}
}
class WriteThinLTOBitcode : public ModulePass {
raw_ostream &OS; // raw_ostream to print on
// The output stream on which to emit a minimized module for use
// just in the thin link, if requested.
raw_ostream *ThinLinkOS;
public:
static char ID; // Pass identification, replacement for typeid
WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
}
explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
: ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
bool runOnModule(Module &M) override {
const ModuleSummaryIndex *Index =
&(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
return true;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ModuleSummaryIndexWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
} // anonymous namespace
char WriteThinLTOBitcode::ID = 0;
INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
"Write ThinLTO Bitcode", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
"Write ThinLTO Bitcode", false, true)
ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
raw_ostream *ThinLinkOS) {
return new WriteThinLTOBitcode(Str, ThinLinkOS);
}