Files
clang-p2996/bolt/lib/Passes/MCF.cpp
chenpeihao3 892305adb1 [BOLT] fix the endless loop of --iterative-guess
Solve the endless loop caused by iterative guess. The main function of this option is guessEdgeByIterativeApproach, where the do while loop involves guessPredEdgeCounts and guessSuccessEdgeCounts. In some scenarios, the do while loop will fall into an endless loop. The reason is that although the GuessedPredEdgeCounts function has guessed the pred-edges counts, GuessedArcs does not insert the corresponding BB block, resulting in the changed variable always being true.

Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D154922
2023-08-04 17:02:47 +08:00

471 lines
16 KiB
C++

//===- bolt/Passes/MCF.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions for solving minimum-cost flow problem.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/MCF.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Passes/DataflowInfoManager.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <vector>
#undef DEBUG_TYPE
#define DEBUG_TYPE "mcf"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<bool> TimeOpts;
static cl::opt<bool> IterativeGuess(
"iterative-guess",
cl::desc("in non-LBR mode, guess edge counts using iterative technique"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool> UseRArcs(
"mcf-use-rarcs",
cl::desc("in MCF, consider the possibility of cancelling flow to balance "
"edges"),
cl::Hidden, cl::cat(BoltOptCategory));
} // namespace opts
namespace llvm {
namespace bolt {
namespace {
// Edge Weight Inference Heuristic
//
// We start by maintaining the invariant used in LBR mode where the sum of
// pred edges count is equal to the block execution count. This loop will set
// pred edges count by balancing its own execution count in different pred
// edges. The weight of each edge is guessed by looking at how hot each pred
// block is (in terms of samples).
// There are two caveats in this approach. One is for critical edges and the
// other is for self-referencing blocks (loops of 1 BB). For critical edges,
// we can't infer the hotness of them based solely on pred BBs execution
// count. For each critical edge we look at the pred BB, then look at its
// succs to adjust its weight.
//
// [ 60 ] [ 25 ]
// | \ |
// [ 10 ] [ 75 ]
//
// The illustration above shows a critical edge \. We wish to adjust bb count
// 60 to 50 to properly determine the weight of the critical edge to be
// 50 / 75.
// For self-referencing edges, we attribute its weight by subtracting the
// current BB execution count by the sum of predecessors count if this result
// is non-negative.
using EdgeWeightMap =
DenseMap<std::pair<const BinaryBasicBlock *, const BinaryBasicBlock *>,
double>;
template <class NodeT>
void updateEdgeWeight(EdgeWeightMap &EdgeWeights, const BinaryBasicBlock *A,
const BinaryBasicBlock *B, double Weight);
template <>
void updateEdgeWeight<BinaryBasicBlock *>(EdgeWeightMap &EdgeWeights,
const BinaryBasicBlock *A,
const BinaryBasicBlock *B,
double Weight) {
EdgeWeights[std::make_pair(A, B)] = Weight;
}
template <>
void updateEdgeWeight<Inverse<BinaryBasicBlock *>>(EdgeWeightMap &EdgeWeights,
const BinaryBasicBlock *A,
const BinaryBasicBlock *B,
double Weight) {
EdgeWeights[std::make_pair(B, A)] = Weight;
}
template <class NodeT>
void computeEdgeWeights(BinaryBasicBlock *BB, EdgeWeightMap &EdgeWeights) {
typedef GraphTraits<NodeT> GraphT;
typedef GraphTraits<Inverse<NodeT>> InvTraits;
double TotalChildrenCount = 0.0;
SmallVector<double, 4> ChildrenExecCount;
// First pass computes total children execution count that directly
// contribute to this BB.
for (typename GraphT::ChildIteratorType CI = GraphT::child_begin(BB),
E = GraphT::child_end(BB);
CI != E; ++CI) {
typename GraphT::NodeRef Child = *CI;
double ChildExecCount = Child->getExecutionCount();
// Is self-reference?
if (Child == BB) {
ChildExecCount = 0.0; // will fill this in second pass
} else if (GraphT::child_end(BB) - GraphT::child_begin(BB) > 1 &&
InvTraits::child_end(Child) - InvTraits::child_begin(Child) >
1) {
// Handle critical edges. This will cause a skew towards crit edges, but
// it is a quick solution.
double CritWeight = 0.0;
uint64_t Denominator = 0;
for (typename InvTraits::ChildIteratorType
II = InvTraits::child_begin(Child),
IE = InvTraits::child_end(Child);
II != IE; ++II) {
typename GraphT::NodeRef N = *II;
Denominator += N->getExecutionCount();
if (N != BB)
continue;
CritWeight = N->getExecutionCount();
}
if (Denominator)
CritWeight /= static_cast<double>(Denominator);
ChildExecCount *= CritWeight;
}
ChildrenExecCount.push_back(ChildExecCount);
TotalChildrenCount += ChildExecCount;
}
// Second pass fixes the weight of a possible self-reference edge
uint32_t ChildIndex = 0;
for (typename GraphT::ChildIteratorType CI = GraphT::child_begin(BB),
E = GraphT::child_end(BB);
CI != E; ++CI) {
typename GraphT::NodeRef Child = *CI;
if (Child != BB) {
++ChildIndex;
continue;
}
if (static_cast<double>(BB->getExecutionCount()) > TotalChildrenCount) {
ChildrenExecCount[ChildIndex] =
BB->getExecutionCount() - TotalChildrenCount;
TotalChildrenCount += ChildrenExecCount[ChildIndex];
}
break;
}
// Third pass finally assigns weights to edges
ChildIndex = 0;
for (typename GraphT::ChildIteratorType CI = GraphT::child_begin(BB),
E = GraphT::child_end(BB);
CI != E; ++CI) {
typename GraphT::NodeRef Child = *CI;
double Weight = 1 / (GraphT::child_end(BB) - GraphT::child_begin(BB));
if (TotalChildrenCount != 0.0)
Weight = ChildrenExecCount[ChildIndex] / TotalChildrenCount;
updateEdgeWeight<NodeT>(EdgeWeights, BB, Child, Weight);
++ChildIndex;
}
}
template <class NodeT>
void computeEdgeWeights(BinaryFunction &BF, EdgeWeightMap &EdgeWeights) {
for (BinaryBasicBlock &BB : BF)
computeEdgeWeights<NodeT>(&BB, EdgeWeights);
}
/// Make BB count match the sum of all incoming edges. If AllEdges is true,
/// make it match max(SumPredEdges, SumSuccEdges).
void recalculateBBCounts(BinaryFunction &BF, bool AllEdges) {
for (BinaryBasicBlock &BB : BF) {
uint64_t TotalPredsEWeight = 0;
for (BinaryBasicBlock *Pred : BB.predecessors())
TotalPredsEWeight += Pred->getBranchInfo(BB).Count;
if (TotalPredsEWeight > BB.getExecutionCount())
BB.setExecutionCount(TotalPredsEWeight);
if (!AllEdges)
continue;
uint64_t TotalSuccsEWeight = 0;
for (BinaryBasicBlock::BinaryBranchInfo &BI : BB.branch_info())
TotalSuccsEWeight += BI.Count;
if (TotalSuccsEWeight > BB.getExecutionCount())
BB.setExecutionCount(TotalSuccsEWeight);
}
}
// This is our main edge count guessing heuristic. Look at predecessors and
// assign a proportionally higher count to pred edges coming from blocks with
// a higher execution count in comparison with the other predecessor blocks,
// making SumPredEdges match the current BB count.
// If "UseSucc" is true, apply the same logic to successor edges as well. Since
// some successor edges may already have assigned a count, only update it if the
// new count is higher.
void guessEdgeByRelHotness(BinaryFunction &BF, bool UseSucc,
EdgeWeightMap &PredEdgeWeights,
EdgeWeightMap &SuccEdgeWeights) {
for (BinaryBasicBlock &BB : BF) {
for (BinaryBasicBlock *Pred : BB.predecessors()) {
double RelativeExec = PredEdgeWeights[std::make_pair(Pred, &BB)];
RelativeExec *= BB.getExecutionCount();
BinaryBasicBlock::BinaryBranchInfo &BI = Pred->getBranchInfo(BB);
if (static_cast<uint64_t>(RelativeExec) > BI.Count)
BI.Count = static_cast<uint64_t>(RelativeExec);
}
if (!UseSucc)
continue;
auto BI = BB.branch_info_begin();
for (BinaryBasicBlock *Succ : BB.successors()) {
double RelativeExec = SuccEdgeWeights[std::make_pair(&BB, Succ)];
RelativeExec *= BB.getExecutionCount();
if (static_cast<uint64_t>(RelativeExec) > BI->Count)
BI->Count = static_cast<uint64_t>(RelativeExec);
++BI;
}
}
}
using ArcSet =
DenseSet<std::pair<const BinaryBasicBlock *, const BinaryBasicBlock *>>;
/// Predecessor edges version of guessEdgeByIterativeApproach. GuessedArcs has
/// all edges we already established their count. Try to guess the count of
/// the remaining edge, if there is only one to guess, and return true if we
/// were able to guess.
bool guessPredEdgeCounts(BinaryBasicBlock *BB, ArcSet &GuessedArcs) {
if (BB->pred_size() == 0)
return false;
uint64_t TotalPredCount = 0;
unsigned NumGuessedEdges = 0;
for (BinaryBasicBlock *Pred : BB->predecessors()) {
if (GuessedArcs.count(std::make_pair(Pred, BB)))
++NumGuessedEdges;
TotalPredCount += Pred->getBranchInfo(*BB).Count;
}
if (NumGuessedEdges != BB->pred_size() - 1)
return false;
int64_t Guessed =
static_cast<int64_t>(BB->getExecutionCount()) - TotalPredCount;
if (Guessed < 0)
Guessed = 0;
for (BinaryBasicBlock *Pred : BB->predecessors()) {
if (GuessedArcs.count(std::make_pair(Pred, BB)))
continue;
Pred->getBranchInfo(*BB).Count = Guessed;
GuessedArcs.insert(std::make_pair(Pred, BB));
return true;
}
llvm_unreachable("Expected unguessed arc");
}
/// Successor edges version of guessEdgeByIterativeApproach. GuessedArcs has
/// all edges we already established their count. Try to guess the count of
/// the remaining edge, if there is only one to guess, and return true if we
/// were able to guess.
bool guessSuccEdgeCounts(BinaryBasicBlock *BB, ArcSet &GuessedArcs) {
if (BB->succ_size() == 0)
return false;
uint64_t TotalSuccCount = 0;
unsigned NumGuessedEdges = 0;
auto BI = BB->branch_info_begin();
for (BinaryBasicBlock *Succ : BB->successors()) {
if (GuessedArcs.count(std::make_pair(BB, Succ)))
++NumGuessedEdges;
TotalSuccCount += BI->Count;
++BI;
}
if (NumGuessedEdges != BB->succ_size() - 1)
return false;
int64_t Guessed =
static_cast<int64_t>(BB->getExecutionCount()) - TotalSuccCount;
if (Guessed < 0)
Guessed = 0;
BI = BB->branch_info_begin();
for (BinaryBasicBlock *Succ : BB->successors()) {
if (GuessedArcs.count(std::make_pair(BB, Succ))) {
++BI;
continue;
}
BI->Count = Guessed;
GuessedArcs.insert(std::make_pair(BB, Succ));
return true;
}
llvm_unreachable("Expected unguessed arc");
}
/// Guess edge count whenever we have only one edge (pred or succ) left
/// to guess. Then make its count equal to BB count minus all other edge
/// counts we already know their count. Repeat this until there is no
/// change.
void guessEdgeByIterativeApproach(BinaryFunction &BF) {
ArcSet KnownArcs;
bool Changed = false;
do {
Changed = false;
for (BinaryBasicBlock &BB : BF) {
if (guessPredEdgeCounts(&BB, KnownArcs))
Changed = true;
if (guessSuccEdgeCounts(&BB, KnownArcs))
Changed = true;
}
} while (Changed);
// Guess count for non-inferred edges
for (BinaryBasicBlock &BB : BF) {
for (BinaryBasicBlock *Pred : BB.predecessors()) {
if (KnownArcs.count(std::make_pair(Pred, &BB)))
continue;
BinaryBasicBlock::BinaryBranchInfo &BI = Pred->getBranchInfo(BB);
BI.Count =
std::min(Pred->getExecutionCount(), BB.getExecutionCount()) / 2;
KnownArcs.insert(std::make_pair(Pred, &BB));
}
auto BI = BB.branch_info_begin();
for (BinaryBasicBlock *Succ : BB.successors()) {
if (KnownArcs.count(std::make_pair(&BB, Succ))) {
++BI;
continue;
}
BI->Count =
std::min(BB.getExecutionCount(), Succ->getExecutionCount()) / 2;
KnownArcs.insert(std::make_pair(&BB, Succ));
break;
}
}
}
/// Associate each basic block with the BinaryLoop object corresponding to the
/// innermost loop containing this block.
DenseMap<const BinaryBasicBlock *, const BinaryLoop *>
createLoopNestLevelMap(BinaryFunction &BF) {
DenseMap<const BinaryBasicBlock *, const BinaryLoop *> LoopNestLevel;
const BinaryLoopInfo &BLI = BF.getLoopInfo();
for (BinaryBasicBlock &BB : BF)
LoopNestLevel[&BB] = BLI[&BB];
return LoopNestLevel;
}
} // end anonymous namespace
void equalizeBBCounts(DataflowInfoManager &Info, BinaryFunction &BF) {
if (BF.begin() == BF.end())
return;
DominatorAnalysis<false> &DA = Info.getDominatorAnalysis();
DominatorAnalysis<true> &PDA = Info.getPostDominatorAnalysis();
auto &InsnToBB = Info.getInsnToBBMap();
// These analyses work at the instruction granularity, but we really only need
// basic block granularity here. So we'll use a set of visited edges to avoid
// revisiting the same BBs again and again.
DenseMap<const BinaryBasicBlock *, std::set<const BinaryBasicBlock *>>
Visited;
// Equivalence classes mapping. Each equivalence class is defined by the set
// of BBs that obeys the aforementioned properties.
DenseMap<const BinaryBasicBlock *, signed> BBsToEC;
std::vector<std::vector<BinaryBasicBlock *>> Classes;
BF.calculateLoopInfo();
DenseMap<const BinaryBasicBlock *, const BinaryLoop *> LoopNestLevel =
createLoopNestLevelMap(BF);
for (BinaryBasicBlock &BB : BF)
BBsToEC[&BB] = -1;
for (BinaryBasicBlock &BB : BF) {
auto I = BB.begin();
if (I == BB.end())
continue;
DA.doForAllDominators(*I, [&](const MCInst &DomInst) {
BinaryBasicBlock *DomBB = InsnToBB[&DomInst];
if (Visited[DomBB].count(&BB))
return;
Visited[DomBB].insert(&BB);
if (!PDA.doesADominateB(*I, DomInst))
return;
if (LoopNestLevel[&BB] != LoopNestLevel[DomBB])
return;
if (BBsToEC[DomBB] == -1 && BBsToEC[&BB] == -1) {
BBsToEC[DomBB] = Classes.size();
BBsToEC[&BB] = Classes.size();
Classes.emplace_back();
Classes.back().push_back(DomBB);
Classes.back().push_back(&BB);
return;
}
if (BBsToEC[DomBB] == -1) {
BBsToEC[DomBB] = BBsToEC[&BB];
Classes[BBsToEC[&BB]].push_back(DomBB);
return;
}
if (BBsToEC[&BB] == -1) {
BBsToEC[&BB] = BBsToEC[DomBB];
Classes[BBsToEC[DomBB]].push_back(&BB);
return;
}
signed BBECNum = BBsToEC[&BB];
std::vector<BinaryBasicBlock *> DomEC = Classes[BBsToEC[DomBB]];
std::vector<BinaryBasicBlock *> BBEC = Classes[BBECNum];
for (BinaryBasicBlock *Block : DomEC) {
BBsToEC[Block] = BBECNum;
BBEC.push_back(Block);
}
DomEC.clear();
});
}
for (std::vector<BinaryBasicBlock *> &Class : Classes) {
uint64_t Max = 0ULL;
for (BinaryBasicBlock *BB : Class)
Max = std::max(Max, BB->getExecutionCount());
for (BinaryBasicBlock *BB : Class)
BB->setExecutionCount(Max);
}
}
void estimateEdgeCounts(BinaryFunction &BF) {
EdgeWeightMap PredEdgeWeights;
EdgeWeightMap SuccEdgeWeights;
if (!opts::IterativeGuess) {
computeEdgeWeights<Inverse<BinaryBasicBlock *>>(BF, PredEdgeWeights);
computeEdgeWeights<BinaryBasicBlock *>(BF, SuccEdgeWeights);
}
if (opts::EqualizeBBCounts) {
LLVM_DEBUG(BF.print(dbgs(), "before equalize BB counts"));
auto Info = DataflowInfoManager(BF, nullptr, nullptr);
equalizeBBCounts(Info, BF);
LLVM_DEBUG(BF.print(dbgs(), "after equalize BB counts"));
}
if (opts::IterativeGuess)
guessEdgeByIterativeApproach(BF);
else
guessEdgeByRelHotness(BF, /*UseSuccs=*/false, PredEdgeWeights,
SuccEdgeWeights);
recalculateBBCounts(BF, /*AllEdges=*/false);
}
void solveMCF(BinaryFunction &BF, MCFCostFunction CostFunction) {
llvm_unreachable("not implemented");
}
} // namespace bolt
} // namespace llvm