Previously only a constant reference was stored in the FirOpBuilder.
However, a lot of code was merged using
FirOpBuilder builder{rewriter, getKindMapping(mod)};
This is incorrect because the KindMapping returned will go out of scope
as soon as FirOpBuilder's constructor had run. This led to an infinite
loop running some tests using HLFIR (because the stack space containing
the kind mapping was re-used and corrupted).
One solution would have just been to fix the incorrect call sites,
however, as a large number of these had already made it past review, I
decided to instead change FirOpBuilder to store its own copy of the
KindMapping. This is not costly because nearly every time we construct a
KindMapping is exclusively to construct a FirOpBuilder. To make this
common pattern simpler, I added a new constructor to FirOpBuilder which
calls getKindMapping().
Differential Revision: https://reviews.llvm.org/D151881
426 lines
17 KiB
C++
426 lines
17 KiB
C++
//===- AbstractResult.cpp - Conversion of Abstract Function Result --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Dialect/FIRDialect.h"
|
|
#include "flang/Optimizer/Dialect/FIROps.h"
|
|
#include "flang/Optimizer/Dialect/FIRType.h"
|
|
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
|
|
#include "flang/Optimizer/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/IR/Diagnostics.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
namespace fir {
|
|
#define GEN_PASS_DEF_ABSTRACTRESULTONFUNCOPT
|
|
#define GEN_PASS_DEF_ABSTRACTRESULTONGLOBALOPT
|
|
#include "flang/Optimizer/Transforms/Passes.h.inc"
|
|
} // namespace fir
|
|
|
|
#define DEBUG_TYPE "flang-abstract-result-opt"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace fir {
|
|
namespace {
|
|
|
|
static mlir::Type getResultArgumentType(mlir::Type resultType,
|
|
bool shouldBoxResult) {
|
|
return llvm::TypeSwitch<mlir::Type, mlir::Type>(resultType)
|
|
.Case<fir::SequenceType, fir::RecordType>(
|
|
[&](mlir::Type type) -> mlir::Type {
|
|
if (shouldBoxResult)
|
|
return fir::BoxType::get(type);
|
|
return fir::ReferenceType::get(type);
|
|
})
|
|
.Case<fir::BaseBoxType>([](mlir::Type type) -> mlir::Type {
|
|
return fir::ReferenceType::get(type);
|
|
})
|
|
.Default([](mlir::Type) -> mlir::Type {
|
|
llvm_unreachable("bad abstract result type");
|
|
});
|
|
}
|
|
|
|
static mlir::FunctionType getNewFunctionType(mlir::FunctionType funcTy,
|
|
bool shouldBoxResult) {
|
|
auto resultType = funcTy.getResult(0);
|
|
auto argTy = getResultArgumentType(resultType, shouldBoxResult);
|
|
llvm::SmallVector<mlir::Type> newInputTypes = {argTy};
|
|
newInputTypes.append(funcTy.getInputs().begin(), funcTy.getInputs().end());
|
|
return mlir::FunctionType::get(funcTy.getContext(), newInputTypes,
|
|
/*resultTypes=*/{});
|
|
}
|
|
|
|
/// This is for function result types that are of type C_PTR from ISO_C_BINDING.
|
|
/// Follow the ABI for interoperability with C.
|
|
static mlir::FunctionType getCPtrFunctionType(mlir::FunctionType funcTy) {
|
|
auto resultType = funcTy.getResult(0);
|
|
assert(fir::isa_builtin_cptr_type(resultType));
|
|
llvm::SmallVector<mlir::Type> outputTypes;
|
|
auto recTy = resultType.dyn_cast<fir::RecordType>();
|
|
outputTypes.emplace_back(recTy.getTypeList()[0].second);
|
|
return mlir::FunctionType::get(funcTy.getContext(), funcTy.getInputs(),
|
|
outputTypes);
|
|
}
|
|
|
|
static bool mustEmboxResult(mlir::Type resultType, bool shouldBoxResult) {
|
|
return resultType.isa<fir::SequenceType, fir::RecordType>() &&
|
|
shouldBoxResult;
|
|
}
|
|
|
|
template <typename Op>
|
|
class CallConversion : public mlir::OpRewritePattern<Op> {
|
|
public:
|
|
using mlir::OpRewritePattern<Op>::OpRewritePattern;
|
|
|
|
CallConversion(mlir::MLIRContext *context, bool shouldBoxResult)
|
|
: OpRewritePattern<Op>(context, 1), shouldBoxResult{shouldBoxResult} {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(Op op, mlir::PatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
auto result = op->getResult(0);
|
|
if (!result.hasOneUse()) {
|
|
mlir::emitError(loc,
|
|
"calls with abstract result must have exactly one user");
|
|
return mlir::failure();
|
|
}
|
|
auto saveResult =
|
|
mlir::dyn_cast<fir::SaveResultOp>(result.use_begin().getUser());
|
|
if (!saveResult) {
|
|
mlir::emitError(
|
|
loc, "calls with abstract result must be used in fir.save_result");
|
|
return mlir::failure();
|
|
}
|
|
auto argType = getResultArgumentType(result.getType(), shouldBoxResult);
|
|
auto buffer = saveResult.getMemref();
|
|
mlir::Value arg = buffer;
|
|
if (mustEmboxResult(result.getType(), shouldBoxResult))
|
|
arg = rewriter.create<fir::EmboxOp>(
|
|
loc, argType, buffer, saveResult.getShape(), /*slice*/ mlir::Value{},
|
|
saveResult.getTypeparams());
|
|
|
|
llvm::SmallVector<mlir::Type> newResultTypes;
|
|
// TODO: This should be generalized for derived types, and it is
|
|
// architecture and OS dependent.
|
|
bool isResultBuiltinCPtr = fir::isa_builtin_cptr_type(result.getType());
|
|
Op newOp;
|
|
if (isResultBuiltinCPtr) {
|
|
auto recTy = result.getType().template dyn_cast<fir::RecordType>();
|
|
newResultTypes.emplace_back(recTy.getTypeList()[0].second);
|
|
}
|
|
|
|
// fir::CallOp specific handling.
|
|
if constexpr (std::is_same_v<Op, fir::CallOp>) {
|
|
if (op.getCallee()) {
|
|
llvm::SmallVector<mlir::Value> newOperands;
|
|
if (!isResultBuiltinCPtr)
|
|
newOperands.emplace_back(arg);
|
|
newOperands.append(op.getOperands().begin(), op.getOperands().end());
|
|
newOp = rewriter.create<fir::CallOp>(loc, *op.getCallee(),
|
|
newResultTypes, newOperands);
|
|
} else {
|
|
// Indirect calls.
|
|
llvm::SmallVector<mlir::Type> newInputTypes;
|
|
if (!isResultBuiltinCPtr)
|
|
newInputTypes.emplace_back(argType);
|
|
for (auto operand : op.getOperands().drop_front())
|
|
newInputTypes.push_back(operand.getType());
|
|
auto newFuncTy = mlir::FunctionType::get(op.getContext(), newInputTypes,
|
|
newResultTypes);
|
|
|
|
llvm::SmallVector<mlir::Value> newOperands;
|
|
newOperands.push_back(
|
|
rewriter.create<fir::ConvertOp>(loc, newFuncTy, op.getOperand(0)));
|
|
if (!isResultBuiltinCPtr)
|
|
newOperands.push_back(arg);
|
|
newOperands.append(op.getOperands().begin() + 1,
|
|
op.getOperands().end());
|
|
newOp = rewriter.create<fir::CallOp>(loc, mlir::SymbolRefAttr{},
|
|
newResultTypes, newOperands);
|
|
}
|
|
}
|
|
|
|
// fir::DispatchOp specific handling.
|
|
if constexpr (std::is_same_v<Op, fir::DispatchOp>) {
|
|
llvm::SmallVector<mlir::Value> newOperands;
|
|
if (!isResultBuiltinCPtr)
|
|
newOperands.emplace_back(arg);
|
|
unsigned passArgShift = newOperands.size();
|
|
newOperands.append(op.getOperands().begin() + 1, op.getOperands().end());
|
|
|
|
fir::DispatchOp newDispatchOp;
|
|
if (op.getPassArgPos())
|
|
newOp = rewriter.create<fir::DispatchOp>(
|
|
loc, newResultTypes, rewriter.getStringAttr(op.getMethod()),
|
|
op.getOperands()[0], newOperands,
|
|
rewriter.getI32IntegerAttr(*op.getPassArgPos() + passArgShift));
|
|
else
|
|
newOp = rewriter.create<fir::DispatchOp>(
|
|
loc, newResultTypes, rewriter.getStringAttr(op.getMethod()),
|
|
op.getOperands()[0], newOperands, nullptr);
|
|
}
|
|
|
|
if (isResultBuiltinCPtr) {
|
|
mlir::Value save = saveResult.getMemref();
|
|
auto module = op->template getParentOfType<mlir::ModuleOp>();
|
|
FirOpBuilder builder(rewriter, module);
|
|
mlir::Value saveAddr = fir::factory::genCPtrOrCFunptrAddr(
|
|
builder, loc, save, result.getType());
|
|
rewriter.create<fir::StoreOp>(loc, newOp->getResult(0), saveAddr);
|
|
}
|
|
op->dropAllReferences();
|
|
rewriter.eraseOp(op);
|
|
return mlir::success();
|
|
}
|
|
|
|
private:
|
|
bool shouldBoxResult;
|
|
};
|
|
|
|
class SaveResultOpConversion
|
|
: public mlir::OpRewritePattern<fir::SaveResultOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
SaveResultOpConversion(mlir::MLIRContext *context)
|
|
: OpRewritePattern(context) {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(fir::SaveResultOp op,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
rewriter.eraseOp(op);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
class ReturnOpConversion : public mlir::OpRewritePattern<mlir::func::ReturnOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
ReturnOpConversion(mlir::MLIRContext *context, mlir::Value newArg)
|
|
: OpRewritePattern(context), newArg{newArg} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(mlir::func::ReturnOp ret,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
auto loc = ret.getLoc();
|
|
rewriter.setInsertionPoint(ret);
|
|
auto returnedValue = ret.getOperand(0);
|
|
bool replacedStorage = false;
|
|
if (auto *op = returnedValue.getDefiningOp())
|
|
if (auto load = mlir::dyn_cast<fir::LoadOp>(op)) {
|
|
auto resultStorage = load.getMemref();
|
|
// The result alloca may be behind a fir.declare, if any.
|
|
if (auto declare = mlir::dyn_cast_or_null<fir::DeclareOp>(
|
|
resultStorage.getDefiningOp()))
|
|
resultStorage = declare.getMemref();
|
|
// TODO: This should be generalized for derived types, and it is
|
|
// architecture and OS dependent.
|
|
if (fir::isa_builtin_cptr_type(returnedValue.getType())) {
|
|
rewriter.eraseOp(load);
|
|
auto module = ret->getParentOfType<mlir::ModuleOp>();
|
|
FirOpBuilder builder(rewriter, module);
|
|
mlir::Value retAddr = fir::factory::genCPtrOrCFunptrAddr(
|
|
builder, loc, resultStorage, returnedValue.getType());
|
|
mlir::Value retValue = rewriter.create<fir::LoadOp>(
|
|
loc, fir::unwrapRefType(retAddr.getType()), retAddr);
|
|
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(
|
|
ret, mlir::ValueRange{retValue});
|
|
return mlir::success();
|
|
}
|
|
resultStorage.replaceAllUsesWith(newArg);
|
|
replacedStorage = true;
|
|
if (auto *alloc = resultStorage.getDefiningOp())
|
|
if (alloc->use_empty())
|
|
rewriter.eraseOp(alloc);
|
|
}
|
|
// The result storage may have been optimized out by a memory to
|
|
// register pass, this is possible for fir.box results, or fir.record
|
|
// with no length parameters. Simply store the result in the result storage.
|
|
// at the return point.
|
|
if (!replacedStorage)
|
|
rewriter.create<fir::StoreOp>(loc, returnedValue, newArg);
|
|
rewriter.replaceOpWithNewOp<mlir::func::ReturnOp>(ret);
|
|
return mlir::success();
|
|
}
|
|
|
|
private:
|
|
mlir::Value newArg;
|
|
};
|
|
|
|
class AddrOfOpConversion : public mlir::OpRewritePattern<fir::AddrOfOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
AddrOfOpConversion(mlir::MLIRContext *context, bool shouldBoxResult)
|
|
: OpRewritePattern(context), shouldBoxResult{shouldBoxResult} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(fir::AddrOfOp addrOf,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
auto oldFuncTy = addrOf.getType().cast<mlir::FunctionType>();
|
|
mlir::FunctionType newFuncTy;
|
|
// TODO: This should be generalized for derived types, and it is
|
|
// architecture and OS dependent.
|
|
if (oldFuncTy.getNumResults() != 0 &&
|
|
fir::isa_builtin_cptr_type(oldFuncTy.getResult(0)))
|
|
newFuncTy = getCPtrFunctionType(oldFuncTy);
|
|
else
|
|
newFuncTy = getNewFunctionType(oldFuncTy, shouldBoxResult);
|
|
auto newAddrOf = rewriter.create<fir::AddrOfOp>(addrOf.getLoc(), newFuncTy,
|
|
addrOf.getSymbol());
|
|
// Rather than converting all op a function pointer might transit through
|
|
// (e.g calls, stores, loads, converts...), cast new type to the abstract
|
|
// type. A conversion will be added when calling indirect calls of abstract
|
|
// types.
|
|
rewriter.replaceOpWithNewOp<fir::ConvertOp>(addrOf, oldFuncTy, newAddrOf);
|
|
return mlir::success();
|
|
}
|
|
|
|
private:
|
|
bool shouldBoxResult;
|
|
};
|
|
|
|
/// @brief Base CRTP class for AbstractResult pass family.
|
|
/// Contains common logic for abstract result conversion in a reusable fashion.
|
|
/// @tparam Pass target class that implements operation-specific logic.
|
|
/// @tparam PassBase base class template for the pass generated by TableGen.
|
|
/// The `Pass` class must define runOnSpecificOperation(OpTy, bool,
|
|
/// mlir::RewritePatternSet&, mlir::ConversionTarget&) member function.
|
|
/// This function should implement operation-specific functionality.
|
|
template <typename Pass, template <typename> class PassBase>
|
|
class AbstractResultOptTemplate : public PassBase<Pass> {
|
|
public:
|
|
void runOnOperation() override {
|
|
auto *context = &this->getContext();
|
|
auto op = this->getOperation();
|
|
|
|
mlir::RewritePatternSet patterns(context);
|
|
mlir::ConversionTarget target = *context;
|
|
const bool shouldBoxResult = this->passResultAsBox.getValue();
|
|
|
|
auto &self = static_cast<Pass &>(*this);
|
|
self.runOnSpecificOperation(op, shouldBoxResult, patterns, target);
|
|
|
|
// Convert the calls and, if needed, the ReturnOp in the function body.
|
|
target.addLegalDialect<fir::FIROpsDialect, mlir::arith::ArithDialect,
|
|
mlir::func::FuncDialect>();
|
|
target.addIllegalOp<fir::SaveResultOp>();
|
|
target.addDynamicallyLegalOp<fir::CallOp>([](fir::CallOp call) {
|
|
return !hasAbstractResult(call.getFunctionType());
|
|
});
|
|
target.addDynamicallyLegalOp<fir::AddrOfOp>([](fir::AddrOfOp addrOf) {
|
|
if (auto funTy = addrOf.getType().dyn_cast<mlir::FunctionType>())
|
|
return !hasAbstractResult(funTy);
|
|
return true;
|
|
});
|
|
target.addDynamicallyLegalOp<fir::DispatchOp>([](fir::DispatchOp dispatch) {
|
|
return !hasAbstractResult(dispatch.getFunctionType());
|
|
});
|
|
|
|
patterns.insert<CallConversion<fir::CallOp>>(context, shouldBoxResult);
|
|
patterns.insert<CallConversion<fir::DispatchOp>>(context, shouldBoxResult);
|
|
patterns.insert<SaveResultOpConversion>(context);
|
|
patterns.insert<AddrOfOpConversion>(context, shouldBoxResult);
|
|
if (mlir::failed(
|
|
mlir::applyPartialConversion(op, target, std::move(patterns)))) {
|
|
mlir::emitError(op.getLoc(), "error in converting abstract results\n");
|
|
this->signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
|
|
class AbstractResultOnFuncOpt
|
|
: public AbstractResultOptTemplate<AbstractResultOnFuncOpt,
|
|
fir::impl::AbstractResultOnFuncOptBase> {
|
|
public:
|
|
void runOnSpecificOperation(mlir::func::FuncOp func, bool shouldBoxResult,
|
|
mlir::RewritePatternSet &patterns,
|
|
mlir::ConversionTarget &target) {
|
|
auto loc = func.getLoc();
|
|
auto *context = &getContext();
|
|
// Convert function type itself if it has an abstract result.
|
|
auto funcTy = func.getFunctionType().cast<mlir::FunctionType>();
|
|
if (hasAbstractResult(funcTy)) {
|
|
// TODO: This should be generalized for derived types, and it is
|
|
// architecture and OS dependent.
|
|
if (fir::isa_builtin_cptr_type(funcTy.getResult(0))) {
|
|
func.setType(getCPtrFunctionType(funcTy));
|
|
patterns.insert<ReturnOpConversion>(context, mlir::Value{});
|
|
target.addDynamicallyLegalOp<mlir::func::ReturnOp>(
|
|
[](mlir::func::ReturnOp ret) {
|
|
mlir::Type retTy = ret.getOperand(0).getType();
|
|
return !fir::isa_builtin_cptr_type(retTy);
|
|
});
|
|
return;
|
|
}
|
|
if (!func.empty()) {
|
|
// Insert new argument.
|
|
mlir::OpBuilder rewriter(context);
|
|
auto resultType = funcTy.getResult(0);
|
|
auto argTy = getResultArgumentType(resultType, shouldBoxResult);
|
|
func.insertArgument(0u, argTy, {}, loc);
|
|
func.eraseResult(0u);
|
|
mlir::Value newArg = func.getArgument(0u);
|
|
if (mustEmboxResult(resultType, shouldBoxResult)) {
|
|
auto bufferType = fir::ReferenceType::get(resultType);
|
|
rewriter.setInsertionPointToStart(&func.front());
|
|
newArg = rewriter.create<fir::BoxAddrOp>(loc, bufferType, newArg);
|
|
}
|
|
patterns.insert<ReturnOpConversion>(context, newArg);
|
|
target.addDynamicallyLegalOp<mlir::func::ReturnOp>(
|
|
[](mlir::func::ReturnOp ret) { return ret.getOperands().empty(); });
|
|
assert(func.getFunctionType() ==
|
|
getNewFunctionType(funcTy, shouldBoxResult));
|
|
} else {
|
|
llvm::SmallVector<mlir::DictionaryAttr> allArgs;
|
|
func.getAllArgAttrs(allArgs);
|
|
allArgs.insert(allArgs.begin(),
|
|
mlir::DictionaryAttr::get(func->getContext()));
|
|
func.setType(getNewFunctionType(funcTy, shouldBoxResult));
|
|
func.setAllArgAttrs(allArgs);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
inline static bool containsFunctionTypeWithAbstractResult(mlir::Type type) {
|
|
return mlir::TypeSwitch<mlir::Type, bool>(type)
|
|
.Case([](fir::BoxProcType boxProc) {
|
|
return fir::hasAbstractResult(
|
|
boxProc.getEleTy().cast<mlir::FunctionType>());
|
|
})
|
|
.Case([](fir::PointerType pointer) {
|
|
return fir::hasAbstractResult(
|
|
pointer.getEleTy().cast<mlir::FunctionType>());
|
|
})
|
|
.Default([](auto &&) { return false; });
|
|
}
|
|
|
|
class AbstractResultOnGlobalOpt
|
|
: public AbstractResultOptTemplate<
|
|
AbstractResultOnGlobalOpt, fir::impl::AbstractResultOnGlobalOptBase> {
|
|
public:
|
|
void runOnSpecificOperation(fir::GlobalOp global, bool,
|
|
mlir::RewritePatternSet &,
|
|
mlir::ConversionTarget &) {
|
|
if (containsFunctionTypeWithAbstractResult(global.getType())) {
|
|
TODO(global->getLoc(), "support for procedure pointers");
|
|
}
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
} // namespace fir
|
|
|
|
std::unique_ptr<mlir::Pass> fir::createAbstractResultOnFuncOptPass() {
|
|
return std::make_unique<AbstractResultOnFuncOpt>();
|
|
}
|
|
|
|
std::unique_ptr<mlir::Pass> fir::createAbstractResultOnGlobalOptPass() {
|
|
return std::make_unique<AbstractResultOnGlobalOpt>();
|
|
}
|