Files
clang-p2996/flang/runtime/complex-reduction.h
Peter Klausler 3ada883f7c [flang][runtime] Runtime support for REDUCE() (#86214)
Supports the REDUCE() transformational intrinsic function of Fortran
(see F'2023 16.9.173) in a manner similar to the existing support for
SUM(), PRODUCT(), &c. There are APIs for total reductions to scalar
results, and APIs for partial reductions that reduce the rank of the
argument by one.

This implementation requires more functions than other reductions
because the various possible types of the user-supplied OPERATION=
function need to be elaborated.

Once the basic API in reduce.h has been approved, later patches will
implement lowering.

REDUCE() is primarily for completeness, not portability; only one other
Fortran compiler implements this F'2018 feature today, and only some
types work correctly with it.
2024-03-26 09:21:16 -07:00

118 lines
5.0 KiB
C

/*===-- flang/runtime/complex-reduction.h ---------------------------*- C -*-===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
* ===-----------------------------------------------------------------------===
*/
/* Wraps the C++-coded complex-valued SUM and PRODUCT reductions with
* C-coded wrapper functions returning _Complex values, to avoid problems
* with C++ build compilers that don't support C's _Complex.
*/
#ifndef FORTRAN_RUNTIME_COMPLEX_REDUCTION_H_
#define FORTRAN_RUNTIME_COMPLEX_REDUCTION_H_
#include "flang/Common/float128.h"
#include "flang/Runtime/entry-names.h"
#include <complex.h>
struct CppDescriptor; /* dummy type name for Fortran::runtime::Descriptor */
#if defined(_MSC_VER) && !(defined(__clang_major__) && __clang_major__ >= 12)
typedef _Fcomplex float_Complex_t;
typedef _Dcomplex double_Complex_t;
typedef _Lcomplex long_double_Complex_t;
#else
typedef float _Complex float_Complex_t;
typedef double _Complex double_Complex_t;
typedef long double _Complex long_double_Complex_t;
#endif
#define REDUCTION_ARGS \
const struct CppDescriptor *x, const char *source, int line, int dim /*=0*/, \
const struct CppDescriptor *mask /*=NULL*/
#define REDUCTION_ARG_NAMES x, source, line, dim, mask
float_Complex_t RTNAME(SumComplex2)(REDUCTION_ARGS);
float_Complex_t RTNAME(SumComplex3)(REDUCTION_ARGS);
float_Complex_t RTNAME(SumComplex4)(REDUCTION_ARGS);
double_Complex_t RTNAME(SumComplex8)(REDUCTION_ARGS);
long_double_Complex_t RTNAME(SumComplex10)(REDUCTION_ARGS);
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
CFloat128ComplexType RTNAME(SumComplex16)(REDUCTION_ARGS);
#endif
float_Complex_t RTNAME(ProductComplex2)(REDUCTION_ARGS);
float_Complex_t RTNAME(ProductComplex3)(REDUCTION_ARGS);
float_Complex_t RTNAME(ProductComplex4)(REDUCTION_ARGS);
double_Complex_t RTNAME(ProductComplex8)(REDUCTION_ARGS);
long_double_Complex_t RTNAME(ProductComplex10)(REDUCTION_ARGS);
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
CFloat128ComplexType RTNAME(ProductComplex16)(REDUCTION_ARGS);
#endif
#define DOT_PRODUCT_ARGS \
const struct CppDescriptor *x, const struct CppDescriptor *y, \
const char *source, int line, int dim /*=0*/, \
const struct CppDescriptor *mask /*=NULL*/
#define DOT_PRODUCT_ARG_NAMES x, y, source, line, dim, mask
float_Complex_t RTNAME(DotProductComplex2)(DOT_PRODUCT_ARGS);
float_Complex_t RTNAME(DotProductComplex3)(DOT_PRODUCT_ARGS);
float_Complex_t RTNAME(DotProductComplex4)(DOT_PRODUCT_ARGS);
double_Complex_t RTNAME(DotProductComplex8)(DOT_PRODUCT_ARGS);
long_double_Complex_t RTNAME(DotProductComplex10)(DOT_PRODUCT_ARGS);
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
CFloat128ComplexType RTNAME(DotProductComplex16)(DOT_PRODUCT_ARGS);
#endif
#define REDUCE_ARGS(T) \
T##_op operation, const struct CppDescriptor *x, \
const struct CppDescriptor *y, const char *source, int line, \
int dim /*=0*/, const struct CppDescriptor *mask /*=NULL*/, \
const T *identity /*=NULL*/, _Bool ordered /*=true*/
#define REDUCE_ARG_NAMES \
operation, x, y, source, line, dim, mask, identity, ordered
typedef float_Complex_t (*float_Complex_t_op)(
const float_Complex_t *, const float_Complex_t *);
typedef double_Complex_t (*double_Complex_t_op)(
const double_Complex_t *, const double_Complex_t *);
typedef long_double_Complex_t (*long_double_Complex_t_op)(
const long_double_Complex_t *, const long_double_Complex_t *);
float_Complex_t RTNAME(ReduceComplex2)(REDUCE_ARGS(float_Complex_t));
float_Complex_t RTNAME(ReduceComplex3)(REDUCE_ARGS(float_Complex_t));
float_Complex_t RTNAME(ReduceComplex4)(REDUCE_ARGS(float_Complex_t));
double_Complex_t RTNAME(ReduceComplex8)(REDUCE_ARGS(double_Complex_t));
long_double_Complex_t RTNAME(ReduceComplex10)(
REDUCE_ARGS(long_double_Complex_t));
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
typedef CFloat128ComplexType (*CFloat128ComplexType_op)(
const CFloat128ComplexType *, const CFloat128ComplexType *);
CFloat128ComplexType RTNAME(ReduceComplex16)(REDUCE_ARGS(CFloat128ComplexType));
#endif
#define REDUCE_DIM_ARGS(T) \
struct CppDescriptor *result, T##_op operation, \
const struct CppDescriptor *x, const struct CppDescriptor *y, \
const char *source, int line, int dim, \
const struct CppDescriptor *mask /*=NULL*/, const T *identity /*=NULL*/, \
_Bool ordered /*=true*/
#define REDUCE_DIM_ARG_NAMES \
result, operation, x, y, source, line, dim, mask, identity, ordered
void RTNAME(ReduceComplex2Dim)(REDUCE_DIM_ARGS(float_Complex_t));
void RTNAME(ReduceComplex3Dim)(REDUCE_DIM_ARGS(float_Complex_t));
void RTNAME(ReduceComplex4Dim)(REDUCE_DIM_ARGS(float_Complex_t));
void RTNAME(ReduceComplex8Dim)(REDUCE_DIM_ARGS(double_Complex_t));
void RTNAME(ReduceComplex10Dim)(REDUCE_DIM_ARGS(long_double_Complex_t));
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
void RTNAME(ReduceComplex16Dim)(REDUCE_DIM_ARGS(CFloat128ComplexType));
#endif
#endif // FORTRAN_RUNTIME_COMPLEX_REDUCTION_H_