Files
clang-p2996/libcxx/test/std/utilities/expected/expected.void/assign/assign.unexpected.move.pass.cpp
Jan Kokemüller 4f4690530e [libc++] Ensure that std::expected has no tail padding (#69673)
Currently std::expected can have some padding bytes in its tail due to
[[no_unique_address]]. Those padding bytes can be used by other objects.
For example, in the current implementation:

  sizeof(std::expected<std::optional<int>, bool>) == 
    sizeof(std::expected<std::expected<std::optional<int>, bool>, bool>)

As a result, the data layout of an
  std::expected<std::expected<std::optional<int>, bool>, bool> 
can look like this:

              +-- optional "has value" flag
              |        +--padding
  /---int---\ |        |
  00 00 00 00 01 00 00 00
                |  |
                |  +- "outer" expected "has value" flag
                |
                +- expected "has value" flag

This is problematic because `emplace()`ing the "inner" expected can not
only overwrite the "inner" expected "has value" flag (issue #68552) but
also the tail padding where other objects might live.

This patch fixes the problem by ensuring that std::expected has no tail
padding, which is achieved by conditional usage of [[no_unique_address]]
based on the tail padding that this would create.

This is an ABI breaking change because the following property changes:

  sizeof(std::expected<std::optional<int>, bool>) <
    sizeof(std::expected<std::expected<std::optional<int>, bool>, bool>)

Before the change, this relation didn't hold. After the change, the relation
does hold, which means that the size of std::expected in these cases increases
after this patch. The data layout will change in the following cases where
tail padding can be reused by other objects:

  class foo : std::expected<std::optional<int>, bool> {
    bool b;
  };

or using [[no_unique_address]]:

  struct foo {
    [[no_unique_address]] std::expected<std::optional<int>, bool> e;
    bool b;
  };

The vendor communication is handled in #70820.
Fixes: #70494

Co-authored-by: philnik777 <nikolasklauser@berlin.de>
Co-authored-by: Louis Dionne <ldionne.2@gmail.com>
2024-01-22 09:05:39 -05:00

214 lines
7.2 KiB
C++

//===----------------------------------------------------------------------===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17, c++20
// template<class G>
// constexpr expected& operator=(unexpected<G>&& e);
//
// Let GF be G
// Constraints:
// - is_constructible_v<E, GF> is true; and
// - is_assignable_v<E&, GF> is true; and
// - is_nothrow_constructible_v<E, GF> || is_nothrow_move_constructible_v<T> ||
// is_nothrow_move_constructible_v<E> is true.
//
// Effects:
// - If has_value() is true, equivalent to:
// reinit-expected(unex, val, std::forward<GF>(e.error()));
// has_val = false;
// - Otherwise, equivalent to: unex = std::forward<GF>(e.error());
// Returns: *this.
#include <cassert>
#include <concepts>
#include <expected>
#include <type_traits>
#include <utility>
#include "../../types.h"
#include "test_macros.h"
struct NotMoveConstructible {
NotMoveConstructible(NotMoveConstructible&&) = delete;
NotMoveConstructible& operator=(NotMoveConstructible&&) = default;
};
struct NotMoveAssignable {
NotMoveAssignable(NotMoveAssignable&&) = default;
NotMoveAssignable& operator=(NotMoveAssignable&&) = delete;
};
struct MoveMayThrow {
MoveMayThrow(MoveMayThrow const&) = default;
MoveMayThrow& operator=(const MoveMayThrow&) = default;
MoveMayThrow(MoveMayThrow&&) noexcept(false) {}
MoveMayThrow& operator=(MoveMayThrow&&) noexcept(false) { return *this; }
};
// Test constraints
static_assert(std::is_assignable_v<std::expected<int, int>&, std::unexpected<int>&&>);
// !is_constructible_v<E, GF>
static_assert(
!std::is_assignable_v<std::expected<int, NotMoveConstructible>&, std::unexpected<NotMoveConstructible>&&>);
// !is_assignable_v<E&, GF>
static_assert(!std::is_assignable_v<std::expected<int, NotMoveAssignable>&, std::unexpected<NotMoveAssignable>&&>);
template <bool moveNoexcept, bool convertNoexcept>
struct MaybeNoexcept {
explicit MaybeNoexcept(int) noexcept(convertNoexcept);
MaybeNoexcept(MaybeNoexcept&&) noexcept(moveNoexcept);
MaybeNoexcept& operator=(MaybeNoexcept&&) = default;
MaybeNoexcept& operator=(int);
};
// !is_nothrow_constructible_v<E, GF> && !is_nothrow_move_constructible_v<T> &&
// is_nothrow_move_constructible_v<E>
static_assert(std::is_assignable_v<std::expected<MaybeNoexcept<false, false>, MaybeNoexcept<true, false>>&,
std::unexpected<int>&&>);
// is_nothrow_constructible_v<E, GF> && !is_nothrow_move_constructible_v<T> &&
// !is_nothrow_move_constructible_v<E>
static_assert(std::is_assignable_v<std::expected<MaybeNoexcept<false, false>, MaybeNoexcept<false, true>>&,
std::unexpected<int>&&>);
// !is_nothrow_constructible_v<E, GF> && is_nothrow_move_constructible_v<T> &&
// !is_nothrow_move_constructible_v<E>
static_assert(std::is_assignable_v<std::expected<MaybeNoexcept<true, true>, MaybeNoexcept<false, false>>&,
std::unexpected<int>&&>);
// !is_nothrow_constructible_v<E, GF> && !is_nothrow_move_constructible_v<T> &&
// !is_nothrow_move_constructible_v<E>
static_assert(!std::is_assignable_v<std::expected<MaybeNoexcept<false, false>, MaybeNoexcept<false, false>>&,
std::unexpected<int>&&>);
constexpr bool test() {
// - If has_value() is true, equivalent to:
// reinit-expected(unex, val, std::forward<GF>(e.error()));
// is_nothrow_constructible_v<E, GF>
//
// In this case, it should call the branch
// destroy_at(addressof(oldval));
// construct_at(addressof(newval), std::forward<Args>(args)...);
{
BothNoexcept::state oldState{};
std::expected<BothNoexcept, BothNoexcept> e(std::in_place, oldState, 5);
std::unexpected<int> un(10);
decltype(auto) x = (e = std::move(un));
static_assert(std::same_as<decltype(x), std::expected<BothNoexcept, BothNoexcept>&>);
assert(&x == &e);
assert(!oldState.moveCtorCalled);
assert(oldState.dtorCalled);
assert(e.error().movedFromInt);
}
// - If has_value() is true, equivalent to:
// reinit-expected(unex, val, std::forward<GF>(e.error()));
// !is_nothrow_constructible_v<E, GF> && is_nothrow_move_constructible_v<E>
//
// In this case, it should call the branch
// T tmp(std::forward<Args>(args)...);
// destroy_at(addressof(oldval));
// construct_at(addressof(newval), std::move(tmp));
{
BothNoexcept::state oldState{};
std::expected<BothNoexcept, MoveNoexceptConvThrow> e(std::in_place, oldState, 5);
std::unexpected<int> un(10);
decltype(auto) x = (e = std::move(un));
static_assert(std::same_as<decltype(x), std::expected<BothNoexcept, MoveNoexceptConvThrow>&>);
assert(&x == &e);
assert(!oldState.moveCtorCalled);
assert(oldState.dtorCalled);
assert(!e.error().movedFromInt);
assert(e.error().movedFromTmp);
}
// - If has_value() is true, equivalent to:
// reinit-expected(unex, val, std::forward<GF>(e.error()));
// !is_nothrow_constructible_v<E, GF> && !is_nothrow_move_constructible_v<E>
// is_nothrow_move_constructible_v<T>
//
// In this case, it should call the branch
// U tmp(std::move(oldval));
// destroy_at(addressof(oldval));
// try {
// construct_at(addressof(newval), std::forward<Args>(args)...);
// } catch (...) {
// construct_at(addressof(oldval), std::move(tmp));
// throw;
// }
{
BothNoexcept::state oldState{};
std::expected<BothNoexcept, BothMayThrow> e(std::in_place, oldState, 5);
std::unexpected<int> un(10);
decltype(auto) x = (e = std::move(un));
static_assert(std::same_as<decltype(x), std::expected<BothNoexcept, BothMayThrow>&>);
assert(&x == &e);
assert(oldState.moveCtorCalled);
assert(oldState.dtorCalled);
assert(e.error().movedFromInt);
}
// Otherwise, equivalent to: unex = std::forward<GF>(e.error());
{
Traced::state oldState{};
Traced::state newState{};
std::expected<int, Traced> e1(std::unexpect, oldState, 5);
std::unexpected<Traced> e(std::in_place, newState, 10);
decltype(auto) x = (e1 = std::move(e));
static_assert(std::same_as<decltype(x), std::expected<int, Traced >&>);
assert(&x == &e1);
assert(!e1.has_value());
assert(e1.error().data_ == 10);
assert(oldState.moveAssignCalled);
}
// CheckForInvalidWrites
{
{
CheckForInvalidWrites<true, true> e;
std::unexpected<int> un(std::in_place, 42);
e = std::move(un);
assert(e.check());
}
{
CheckForInvalidWrites<false, true> e;
std::unexpected<bool> un(std::in_place, true);
e = std::move(un);
assert(e.check());
}
}
return true;
}
void testException() {
#ifndef TEST_HAS_NO_EXCEPTIONS
std::expected<void, ThrowOnMoveConstruct> e1(std::in_place);
std::unexpected<ThrowOnMoveConstruct> un(std::in_place);
try {
e1 = std::move(un);
assert(false);
} catch (Except) {
assert(e1.has_value());
}
#endif // TEST_HAS_NO_EXCEPTIONS
}
int main(int, char**) {
test();
static_assert(test());
testException();
return 0;
}