This is another part of #70452 which makes getMemOperandsWithOffsetWidth use a LocationSize for Width, as opposed to the unsigned it currently uses. The advantages on it's own are not super high if getMemOperandsWithOffsetWidth usually uses known sizes, but if the values can come from an MMO it can help be more accurate in case they are Unknown (and in the future, scalable).
781 lines
27 KiB
C++
781 lines
27 KiB
C++
//===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Hexagon specific subclass of TargetSubtarget.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "HexagonSubtarget.h"
|
|
#include "Hexagon.h"
|
|
#include "HexagonInstrInfo.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "MCTargetDesc/HexagonMCTargetDesc.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineScheduler.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
|
|
#include "llvm/IR/IntrinsicsHexagon.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <map>
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "hexagon-subtarget"
|
|
|
|
#define GET_SUBTARGETINFO_CTOR
|
|
#define GET_SUBTARGETINFO_TARGET_DESC
|
|
#include "HexagonGenSubtargetInfo.inc"
|
|
|
|
static cl::opt<bool> EnableBSBSched("enable-bsb-sched", cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
EnableDotCurSched("enable-cur-sched", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable the scheduler to generate .cur"));
|
|
|
|
static cl::opt<bool>
|
|
DisableHexagonMISched("disable-hexagon-misched", cl::Hidden,
|
|
cl::desc("Disable Hexagon MI Scheduling"));
|
|
|
|
static cl::opt<bool> EnableSubregLiveness(
|
|
"hexagon-subreg-liveness", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable subregister liveness tracking for Hexagon"));
|
|
|
|
static cl::opt<bool> OverrideLongCalls(
|
|
"hexagon-long-calls", cl::Hidden,
|
|
cl::desc("If present, forces/disables the use of long calls"));
|
|
|
|
static cl::opt<bool>
|
|
EnablePredicatedCalls("hexagon-pred-calls", cl::Hidden,
|
|
cl::desc("Consider calls to be predicable"));
|
|
|
|
static cl::opt<bool> SchedPredsCloser("sched-preds-closer", cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> EnableCheckBankConflict(
|
|
"hexagon-check-bank-conflict", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable checking for cache bank conflicts"));
|
|
|
|
HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
|
|
StringRef FS, const TargetMachine &TM)
|
|
: HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
|
|
OptLevel(TM.getOptLevel()),
|
|
CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))),
|
|
TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
|
|
RegInfo(getHwMode()), TLInfo(TM, *this),
|
|
InstrItins(getInstrItineraryForCPU(CPUString)) {
|
|
Hexagon_MC::addArchSubtarget(this, FS);
|
|
// Beware of the default constructor of InstrItineraryData: it will
|
|
// reset all members to 0.
|
|
assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
|
|
}
|
|
|
|
HexagonSubtarget &
|
|
HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
|
|
std::optional<Hexagon::ArchEnum> ArchVer = Hexagon::getCpu(CPUString);
|
|
if (ArchVer)
|
|
HexagonArchVersion = *ArchVer;
|
|
else
|
|
llvm_unreachable("Unrecognized Hexagon processor version");
|
|
|
|
UseHVX128BOps = false;
|
|
UseHVX64BOps = false;
|
|
UseAudioOps = false;
|
|
UseLongCalls = false;
|
|
|
|
SubtargetFeatures Features(FS);
|
|
|
|
// Turn on QFloat if the HVX version is v68+.
|
|
// The function ParseSubtargetFeatures will set feature bits and initialize
|
|
// subtarget's variables all in one, so there isn't a good way to preprocess
|
|
// the feature string, other than by tinkering with it directly.
|
|
auto IsQFloatFS = [](StringRef F) {
|
|
return F == "+hvx-qfloat" || F == "-hvx-qfloat";
|
|
};
|
|
if (!llvm::count_if(Features.getFeatures(), IsQFloatFS)) {
|
|
auto getHvxVersion = [&Features](StringRef FS) -> StringRef {
|
|
for (StringRef F : llvm::reverse(Features.getFeatures())) {
|
|
if (F.starts_with("+hvxv"))
|
|
return F;
|
|
}
|
|
for (StringRef F : llvm::reverse(Features.getFeatures())) {
|
|
if (F == "-hvx")
|
|
return StringRef();
|
|
if (F.starts_with("+hvx") || F == "-hvx")
|
|
return F.take_front(4); // Return "+hvx" or "-hvx".
|
|
}
|
|
return StringRef();
|
|
};
|
|
|
|
bool AddQFloat = false;
|
|
StringRef HvxVer = getHvxVersion(FS);
|
|
if (HvxVer.starts_with("+hvxv")) {
|
|
int Ver = 0;
|
|
if (!HvxVer.drop_front(5).consumeInteger(10, Ver) && Ver >= 68)
|
|
AddQFloat = true;
|
|
} else if (HvxVer == "+hvx") {
|
|
if (hasV68Ops())
|
|
AddQFloat = true;
|
|
}
|
|
|
|
if (AddQFloat)
|
|
Features.AddFeature("+hvx-qfloat");
|
|
}
|
|
|
|
std::string FeatureString = Features.getString();
|
|
ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FeatureString);
|
|
|
|
if (useHVXV68Ops())
|
|
UseHVXFloatingPoint = UseHVXIEEEFPOps || UseHVXQFloatOps;
|
|
|
|
if (UseHVXQFloatOps && UseHVXIEEEFPOps && UseHVXFloatingPoint)
|
|
LLVM_DEBUG(
|
|
dbgs() << "Behavior is undefined for simultaneous qfloat and ieee hvx codegen...");
|
|
|
|
if (OverrideLongCalls.getPosition())
|
|
UseLongCalls = OverrideLongCalls;
|
|
|
|
UseBSBScheduling = hasV60Ops() && EnableBSBSched;
|
|
|
|
if (isTinyCore()) {
|
|
// Tiny core has a single thread, so back-to-back scheduling is enabled by
|
|
// default.
|
|
if (!EnableBSBSched.getPosition())
|
|
UseBSBScheduling = false;
|
|
}
|
|
|
|
FeatureBitset FeatureBits = getFeatureBits();
|
|
if (HexagonDisableDuplex)
|
|
setFeatureBits(FeatureBits.reset(Hexagon::FeatureDuplex));
|
|
setFeatureBits(Hexagon_MC::completeHVXFeatures(FeatureBits));
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const {
|
|
if (!useHVXOps())
|
|
return false;
|
|
if (Ty.isVector())
|
|
Ty = Ty.getVectorElementType();
|
|
if (IncludeBool && Ty == MVT::i1)
|
|
return true;
|
|
ArrayRef<MVT> ElemTypes = getHVXElementTypes();
|
|
return llvm::is_contained(ElemTypes, Ty);
|
|
}
|
|
|
|
bool HexagonSubtarget::isHVXVectorType(EVT VecTy, bool IncludeBool) const {
|
|
if (!VecTy.isSimple())
|
|
return false;
|
|
if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector())
|
|
return false;
|
|
MVT ElemTy = VecTy.getSimpleVT().getVectorElementType();
|
|
if (!IncludeBool && ElemTy == MVT::i1)
|
|
return false;
|
|
|
|
unsigned HwLen = getVectorLength();
|
|
unsigned NumElems = VecTy.getVectorNumElements();
|
|
ArrayRef<MVT> ElemTypes = getHVXElementTypes();
|
|
|
|
if (IncludeBool && ElemTy == MVT::i1) {
|
|
// Boolean HVX vector types are formed from regular HVX vector types
|
|
// by replacing the element type with i1.
|
|
for (MVT T : ElemTypes)
|
|
if (NumElems * T.getSizeInBits() == 8 * HwLen)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
unsigned VecWidth = VecTy.getSizeInBits();
|
|
if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen)
|
|
return false;
|
|
return llvm::is_contained(ElemTypes, ElemTy);
|
|
}
|
|
|
|
bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const {
|
|
if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy))
|
|
return false;
|
|
// Avoid types like <2 x i32*>.
|
|
Type *ScalTy = VecTy->getScalarType();
|
|
if (!ScalTy->isIntegerTy() &&
|
|
!(ScalTy->isFloatingPointTy() && useHVXFloatingPoint()))
|
|
return false;
|
|
// The given type may be something like <17 x i32>, which is not MVT,
|
|
// but can be represented as (non-simple) EVT.
|
|
EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false);
|
|
if (!Ty.getVectorElementType().isSimple())
|
|
return false;
|
|
|
|
auto isHvxTy = [this, IncludeBool](MVT SimpleTy) {
|
|
if (isHVXVectorType(SimpleTy, IncludeBool))
|
|
return true;
|
|
auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy);
|
|
return Action == TargetLoweringBase::TypeWidenVector;
|
|
};
|
|
|
|
// Round up EVT to have power-of-2 elements, and keep checking if it
|
|
// qualifies for HVX, dividing it in half after each step.
|
|
MVT ElemTy = Ty.getVectorElementType().getSimpleVT();
|
|
unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements());
|
|
while (VecLen > 1) {
|
|
MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen);
|
|
if (SimpleTy.isValid() && isHvxTy(SimpleTy))
|
|
return true;
|
|
VecLen /= 2;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
|
|
for (SUnit &SU : DAG->SUnits) {
|
|
if (!SU.isInstr())
|
|
continue;
|
|
SmallVector<SDep, 4> Erase;
|
|
for (auto &D : SU.Preds)
|
|
if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
|
|
Erase.push_back(D);
|
|
for (auto &E : Erase)
|
|
SU.removePred(E);
|
|
}
|
|
}
|
|
|
|
void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
|
|
for (SUnit &SU : DAG->SUnits) {
|
|
// Update the latency of chain edges between v60 vector load or store
|
|
// instructions to be 1. These instruction cannot be scheduled in the
|
|
// same packet.
|
|
MachineInstr &MI1 = *SU.getInstr();
|
|
auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
|
|
bool IsStoreMI1 = MI1.mayStore();
|
|
bool IsLoadMI1 = MI1.mayLoad();
|
|
if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
|
|
continue;
|
|
for (SDep &SI : SU.Succs) {
|
|
if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
|
|
continue;
|
|
MachineInstr &MI2 = *SI.getSUnit()->getInstr();
|
|
if (!QII->isHVXVec(MI2))
|
|
continue;
|
|
if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
|
|
SI.setLatency(1);
|
|
SU.setHeightDirty();
|
|
// Change the dependence in the opposite direction too.
|
|
for (SDep &PI : SI.getSUnit()->Preds) {
|
|
if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
|
|
continue;
|
|
PI.setLatency(1);
|
|
SI.getSUnit()->setDepthDirty();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if a call and subsequent A2_tfrpi instructions should maintain
|
|
// scheduling affinity. We are looking for the TFRI to be consumed in
|
|
// the next instruction. This should help reduce the instances of
|
|
// double register pairs being allocated and scheduled before a call
|
|
// when not used until after the call. This situation is exacerbated
|
|
// by the fact that we allocate the pair from the callee saves list,
|
|
// leading to excess spills and restores.
|
|
bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
|
|
const HexagonInstrInfo &HII, const SUnit &Inst1,
|
|
const SUnit &Inst2) const {
|
|
if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
|
|
return false;
|
|
|
|
// TypeXTYPE are 64 bit operations.
|
|
unsigned Type = HII.getType(*Inst2.getInstr());
|
|
return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
|
|
Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
|
|
}
|
|
|
|
void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
|
|
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
|
|
SUnit* LastSequentialCall = nullptr;
|
|
// Map from virtual register to physical register from the copy.
|
|
DenseMap<unsigned, unsigned> VRegHoldingReg;
|
|
// Map from the physical register to the instruction that uses virtual
|
|
// register. This is used to create the barrier edge.
|
|
DenseMap<unsigned, SUnit *> LastVRegUse;
|
|
auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
|
|
auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
|
|
|
|
// Currently we only catch the situation when compare gets scheduled
|
|
// before preceding call.
|
|
for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
|
|
// Remember the call.
|
|
if (DAG->SUnits[su].getInstr()->isCall())
|
|
LastSequentialCall = &DAG->SUnits[su];
|
|
// Look for a compare that defines a predicate.
|
|
else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
|
|
DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
|
|
// Look for call and tfri* instructions.
|
|
else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
|
|
shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
|
|
DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
|
|
// Prevent redundant register copies due to reads and writes of physical
|
|
// registers. The original motivation for this was the code generated
|
|
// between two calls, which are caused both the return value and the
|
|
// argument for the next call being in %r0.
|
|
// Example:
|
|
// 1: <call1>
|
|
// 2: %vreg = COPY %r0
|
|
// 3: <use of %vreg>
|
|
// 4: %r0 = ...
|
|
// 5: <call2>
|
|
// The scheduler would often swap 3 and 4, so an additional register is
|
|
// needed. This code inserts a Barrier dependence between 3 & 4 to prevent
|
|
// this.
|
|
// The code below checks for all the physical registers, not just R0/D0/V0.
|
|
else if (SchedRetvalOptimization) {
|
|
const MachineInstr *MI = DAG->SUnits[su].getInstr();
|
|
if (MI->isCopy() && MI->getOperand(1).getReg().isPhysical()) {
|
|
// %vregX = COPY %r0
|
|
VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
|
|
LastVRegUse.erase(MI->getOperand(1).getReg());
|
|
} else {
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (MO.isUse() && !MI->isCopy() &&
|
|
VRegHoldingReg.count(MO.getReg())) {
|
|
// <use of %vregX>
|
|
LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
|
|
} else if (MO.isDef() && MO.getReg().isPhysical()) {
|
|
for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
|
|
++AI) {
|
|
if (LastVRegUse.count(*AI) &&
|
|
LastVRegUse[*AI] != &DAG->SUnits[su])
|
|
// %r0 = ...
|
|
DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
|
|
LastVRegUse.erase(*AI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
|
|
if (!EnableCheckBankConflict)
|
|
return;
|
|
|
|
const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
|
|
|
|
// Create artificial edges between loads that could likely cause a bank
|
|
// conflict. Since such loads would normally not have any dependency
|
|
// between them, we cannot rely on existing edges.
|
|
for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
|
|
SUnit &S0 = DAG->SUnits[i];
|
|
MachineInstr &L0 = *S0.getInstr();
|
|
if (!L0.mayLoad() || L0.mayStore() ||
|
|
HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
|
|
continue;
|
|
int64_t Offset0;
|
|
LocationSize Size0 = 0;
|
|
MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
|
|
// Is the access size is longer than the L1 cache line, skip the check.
|
|
if (BaseOp0 == nullptr || !BaseOp0->isReg() || !Size0.hasValue() ||
|
|
Size0.getValue() >= 32)
|
|
continue;
|
|
// Scan only up to 32 instructions ahead (to avoid n^2 complexity).
|
|
for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
|
|
SUnit &S1 = DAG->SUnits[j];
|
|
MachineInstr &L1 = *S1.getInstr();
|
|
if (!L1.mayLoad() || L1.mayStore() ||
|
|
HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
|
|
continue;
|
|
int64_t Offset1;
|
|
LocationSize Size1 = 0;
|
|
MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
|
|
if (BaseOp1 == nullptr || !BaseOp1->isReg() || !Size0.hasValue() ||
|
|
Size1.getValue() >= 32 || BaseOp0->getReg() != BaseOp1->getReg())
|
|
continue;
|
|
// Check bits 3 and 4 of the offset: if they differ, a bank conflict
|
|
// is unlikely.
|
|
if (((Offset0 ^ Offset1) & 0x18) != 0)
|
|
continue;
|
|
// Bits 3 and 4 are the same, add an artificial edge and set extra
|
|
// latency.
|
|
SDep A(&S0, SDep::Artificial);
|
|
A.setLatency(1);
|
|
S1.addPred(A, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Enable use of alias analysis during code generation (during MI
|
|
/// scheduling, DAGCombine, etc.).
|
|
bool HexagonSubtarget::useAA() const {
|
|
if (OptLevel != CodeGenOptLevel::None)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Perform target specific adjustments to the latency of a schedule
|
|
/// dependency.
|
|
void HexagonSubtarget::adjustSchedDependency(SUnit *Src, int SrcOpIdx,
|
|
SUnit *Dst, int DstOpIdx,
|
|
SDep &Dep) const {
|
|
if (!Src->isInstr() || !Dst->isInstr())
|
|
return;
|
|
|
|
MachineInstr *SrcInst = Src->getInstr();
|
|
MachineInstr *DstInst = Dst->getInstr();
|
|
const HexagonInstrInfo *QII = getInstrInfo();
|
|
|
|
// Instructions with .new operands have zero latency.
|
|
SmallSet<SUnit *, 4> ExclSrc;
|
|
SmallSet<SUnit *, 4> ExclDst;
|
|
if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
|
|
isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
|
|
Dep.setLatency(0);
|
|
return;
|
|
}
|
|
|
|
// Set the latency for a copy to zero since we hope that is will get
|
|
// removed.
|
|
if (DstInst->isCopy())
|
|
Dep.setLatency(0);
|
|
|
|
// If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
|
|
// the correct latency.
|
|
// If there are multiple uses of the def of COPY/REG_SEQUENCE, set the latency
|
|
// only if the latencies on all the uses are equal, otherwise set it to
|
|
// default.
|
|
if ((DstInst->isRegSequence() || DstInst->isCopy())) {
|
|
Register DReg = DstInst->getOperand(0).getReg();
|
|
std::optional<unsigned> DLatency;
|
|
for (const auto &DDep : Dst->Succs) {
|
|
MachineInstr *DDst = DDep.getSUnit()->getInstr();
|
|
int UseIdx = -1;
|
|
for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
|
|
const MachineOperand &MO = DDst->getOperand(OpNum);
|
|
if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
|
|
UseIdx = OpNum;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (UseIdx == -1)
|
|
continue;
|
|
|
|
std::optional<unsigned> Latency =
|
|
InstrInfo.getOperandLatency(&InstrItins, *SrcInst, 0, *DDst, UseIdx);
|
|
|
|
// Set DLatency for the first time.
|
|
if (!DLatency)
|
|
DLatency = Latency;
|
|
|
|
// For multiple uses, if the Latency is different across uses, reset
|
|
// DLatency.
|
|
if (DLatency != Latency) {
|
|
DLatency = std::nullopt;
|
|
break;
|
|
}
|
|
}
|
|
Dep.setLatency(DLatency ? *DLatency : 0);
|
|
}
|
|
|
|
// Try to schedule uses near definitions to generate .cur.
|
|
ExclSrc.clear();
|
|
ExclDst.clear();
|
|
if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
|
|
isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
|
|
Dep.setLatency(0);
|
|
return;
|
|
}
|
|
int Latency = Dep.getLatency();
|
|
bool IsArtificial = Dep.isArtificial();
|
|
Latency = updateLatency(*SrcInst, *DstInst, IsArtificial, Latency);
|
|
Dep.setLatency(Latency);
|
|
}
|
|
|
|
void HexagonSubtarget::getPostRAMutations(
|
|
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
|
|
Mutations.push_back(std::make_unique<UsrOverflowMutation>());
|
|
Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
|
|
Mutations.push_back(std::make_unique<BankConflictMutation>());
|
|
}
|
|
|
|
void HexagonSubtarget::getSMSMutations(
|
|
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
|
|
Mutations.push_back(std::make_unique<UsrOverflowMutation>());
|
|
Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
|
|
}
|
|
|
|
// Pin the vtable to this file.
|
|
void HexagonSubtarget::anchor() {}
|
|
|
|
bool HexagonSubtarget::enableMachineScheduler() const {
|
|
if (DisableHexagonMISched.getNumOccurrences())
|
|
return !DisableHexagonMISched;
|
|
return true;
|
|
}
|
|
|
|
bool HexagonSubtarget::usePredicatedCalls() const {
|
|
return EnablePredicatedCalls;
|
|
}
|
|
|
|
int HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
|
|
MachineInstr &DstInst, bool IsArtificial,
|
|
int Latency) const {
|
|
if (IsArtificial)
|
|
return 1;
|
|
if (!hasV60Ops())
|
|
return Latency;
|
|
|
|
auto &QII = static_cast<const HexagonInstrInfo &>(*getInstrInfo());
|
|
// BSB scheduling.
|
|
if (QII.isHVXVec(SrcInst) || useBSBScheduling())
|
|
Latency = (Latency + 1) >> 1;
|
|
return Latency;
|
|
}
|
|
|
|
void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
|
|
MachineInstr *SrcI = Src->getInstr();
|
|
for (auto &I : Src->Succs) {
|
|
if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
|
|
continue;
|
|
Register DepR = I.getReg();
|
|
int DefIdx = -1;
|
|
for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
|
|
const MachineOperand &MO = SrcI->getOperand(OpNum);
|
|
bool IsSameOrSubReg = false;
|
|
if (MO.isReg()) {
|
|
Register MOReg = MO.getReg();
|
|
if (DepR.isVirtual()) {
|
|
IsSameOrSubReg = (MOReg == DepR);
|
|
} else {
|
|
IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg);
|
|
}
|
|
if (MO.isDef() && IsSameOrSubReg)
|
|
DefIdx = OpNum;
|
|
}
|
|
}
|
|
assert(DefIdx >= 0 && "Def Reg not found in Src MI");
|
|
MachineInstr *DstI = Dst->getInstr();
|
|
SDep T = I;
|
|
for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
|
|
const MachineOperand &MO = DstI->getOperand(OpNum);
|
|
if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
|
|
std::optional<unsigned> Latency = InstrInfo.getOperandLatency(
|
|
&InstrItins, *SrcI, DefIdx, *DstI, OpNum);
|
|
|
|
// For some instructions (ex: COPY), we might end up with < 0 latency
|
|
// as they don't have any Itinerary class associated with them.
|
|
if (!Latency)
|
|
Latency = 0;
|
|
bool IsArtificial = I.isArtificial();
|
|
Latency = updateLatency(*SrcI, *DstI, IsArtificial, *Latency);
|
|
I.setLatency(*Latency);
|
|
}
|
|
}
|
|
|
|
// Update the latency of opposite edge too.
|
|
T.setSUnit(Src);
|
|
auto F = find(Dst->Preds, T);
|
|
assert(F != Dst->Preds.end());
|
|
F->setLatency(I.getLatency());
|
|
}
|
|
}
|
|
|
|
/// Change the latency between the two SUnits.
|
|
void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
|
|
const {
|
|
for (auto &I : Src->Succs) {
|
|
if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
|
|
continue;
|
|
SDep T = I;
|
|
I.setLatency(Lat);
|
|
|
|
// Update the latency of opposite edge too.
|
|
T.setSUnit(Src);
|
|
auto F = find(Dst->Preds, T);
|
|
assert(F != Dst->Preds.end());
|
|
F->setLatency(Lat);
|
|
}
|
|
}
|
|
|
|
/// If the SUnit has a zero latency edge, return the other SUnit.
|
|
static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
|
|
for (auto &I : Deps)
|
|
if (I.isAssignedRegDep() && I.getLatency() == 0 &&
|
|
!I.getSUnit()->getInstr()->isPseudo())
|
|
return I.getSUnit();
|
|
return nullptr;
|
|
}
|
|
|
|
// Return true if these are the best two instructions to schedule
|
|
// together with a zero latency. Only one dependence should have a zero
|
|
// latency. If there are multiple choices, choose the best, and change
|
|
// the others, if needed.
|
|
bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
|
|
const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
|
|
SmallSet<SUnit*, 4> &ExclDst) const {
|
|
MachineInstr &SrcInst = *Src->getInstr();
|
|
MachineInstr &DstInst = *Dst->getInstr();
|
|
|
|
// Ignore Boundary SU nodes as these have null instructions.
|
|
if (Dst->isBoundaryNode())
|
|
return false;
|
|
|
|
if (SrcInst.isPHI() || DstInst.isPHI())
|
|
return false;
|
|
|
|
if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
|
|
!TII->canExecuteInBundle(SrcInst, DstInst))
|
|
return false;
|
|
|
|
// The architecture doesn't allow three dependent instructions in the same
|
|
// packet. So, if the destination has a zero latency successor, then it's
|
|
// not a candidate for a zero latency predecessor.
|
|
if (getZeroLatency(Dst, Dst->Succs) != nullptr)
|
|
return false;
|
|
|
|
// Check if the Dst instruction is the best candidate first.
|
|
SUnit *Best = nullptr;
|
|
SUnit *DstBest = nullptr;
|
|
SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
|
|
if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
|
|
// Check that Src doesn't have a better candidate.
|
|
DstBest = getZeroLatency(Src, Src->Succs);
|
|
if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
|
|
Best = Dst;
|
|
}
|
|
if (Best != Dst)
|
|
return false;
|
|
|
|
// The caller frequently adds the same dependence twice. If so, then
|
|
// return true for this case too.
|
|
if ((Src == SrcBest && Dst == DstBest ) ||
|
|
(SrcBest == nullptr && Dst == DstBest) ||
|
|
(Src == SrcBest && Dst == nullptr))
|
|
return true;
|
|
|
|
// Reassign the latency for the previous bests, which requires setting
|
|
// the dependence edge in both directions.
|
|
if (SrcBest != nullptr) {
|
|
if (!hasV60Ops())
|
|
changeLatency(SrcBest, Dst, 1);
|
|
else
|
|
restoreLatency(SrcBest, Dst);
|
|
}
|
|
if (DstBest != nullptr) {
|
|
if (!hasV60Ops())
|
|
changeLatency(Src, DstBest, 1);
|
|
else
|
|
restoreLatency(Src, DstBest);
|
|
}
|
|
|
|
// Attempt to find another opprotunity for zero latency in a different
|
|
// dependence.
|
|
if (SrcBest && DstBest)
|
|
// If there is an edge from SrcBest to DstBst, then try to change that
|
|
// to 0 now.
|
|
changeLatency(SrcBest, DstBest, 0);
|
|
else if (DstBest) {
|
|
// Check if the previous best destination instruction has a new zero
|
|
// latency dependence opportunity.
|
|
ExclSrc.insert(Src);
|
|
for (auto &I : DstBest->Preds)
|
|
if (ExclSrc.count(I.getSUnit()) == 0 &&
|
|
isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
|
|
changeLatency(I.getSUnit(), DstBest, 0);
|
|
} else if (SrcBest) {
|
|
// Check if previous best source instruction has a new zero latency
|
|
// dependence opportunity.
|
|
ExclDst.insert(Dst);
|
|
for (auto &I : SrcBest->Succs)
|
|
if (ExclDst.count(I.getSUnit()) == 0 &&
|
|
isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
|
|
changeLatency(SrcBest, I.getSUnit(), 0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned HexagonSubtarget::getL1CacheLineSize() const {
|
|
return 32;
|
|
}
|
|
|
|
unsigned HexagonSubtarget::getL1PrefetchDistance() const {
|
|
return 32;
|
|
}
|
|
|
|
bool HexagonSubtarget::enableSubRegLiveness() const {
|
|
return EnableSubregLiveness;
|
|
}
|
|
|
|
Intrinsic::ID HexagonSubtarget::getIntrinsicId(unsigned Opc) const {
|
|
struct Scalar {
|
|
unsigned Opcode;
|
|
Intrinsic::ID IntId;
|
|
};
|
|
struct Hvx {
|
|
unsigned Opcode;
|
|
Intrinsic::ID Int64Id, Int128Id;
|
|
};
|
|
|
|
static Scalar ScalarInts[] = {
|
|
#define GET_SCALAR_INTRINSICS
|
|
#include "HexagonDepInstrIntrinsics.inc"
|
|
#undef GET_SCALAR_INTRINSICS
|
|
};
|
|
|
|
static Hvx HvxInts[] = {
|
|
#define GET_HVX_INTRINSICS
|
|
#include "HexagonDepInstrIntrinsics.inc"
|
|
#undef GET_HVX_INTRINSICS
|
|
};
|
|
|
|
const auto CmpOpcode = [](auto A, auto B) { return A.Opcode < B.Opcode; };
|
|
[[maybe_unused]] static bool SortedScalar =
|
|
(llvm::sort(ScalarInts, CmpOpcode), true);
|
|
[[maybe_unused]] static bool SortedHvx =
|
|
(llvm::sort(HvxInts, CmpOpcode), true);
|
|
|
|
auto [BS, ES] = std::make_pair(std::begin(ScalarInts), std::end(ScalarInts));
|
|
auto [BH, EH] = std::make_pair(std::begin(HvxInts), std::end(HvxInts));
|
|
|
|
auto FoundScalar = std::lower_bound(BS, ES, Scalar{Opc, 0}, CmpOpcode);
|
|
if (FoundScalar != ES && FoundScalar->Opcode == Opc)
|
|
return FoundScalar->IntId;
|
|
|
|
auto FoundHvx = std::lower_bound(BH, EH, Hvx{Opc, 0, 0}, CmpOpcode);
|
|
if (FoundHvx != EH && FoundHvx->Opcode == Opc) {
|
|
unsigned HwLen = getVectorLength();
|
|
if (HwLen == 64)
|
|
return FoundHvx->Int64Id;
|
|
if (HwLen == 128)
|
|
return FoundHvx->Int128Id;
|
|
}
|
|
|
|
std::string error = "Invalid opcode (" + std::to_string(Opc) + ")";
|
|
llvm_unreachable(error.c_str());
|
|
return 0;
|
|
}
|