This is the major rename patch that prior patches have built towards. The DPValue class is being renamed to DbgVariableRecord, which reflects the updated terminology for the "final" implementation of the RemoveDI feature. This is a pure string substitution + clang-format patch. The only manual component of this patch was determining where to perform these string substitutions: `DPValue` and `DPV` are almost exclusively used for DbgRecords, *except* for: - llvm/lib/target, where 'DP' is used to mean double-precision, and so appears as part of .td files and in variable names. NB: There is a single existing use of `DPValue` here that refers to debug info, which I've manually updated. - llvm/tools/gold, where 'LDPV' is used as a prefix for symbol visibility enums. Outside of these places, I've applied several basic string substitutions, with the intent that they only affect DbgRecord-related identifiers; I've checked them as I went through to verify this, with reasonable confidence that there are no unintended changes that slipped through the cracks. The substitutions applied are all case-sensitive, and are applied in the order shown: ``` DPValue -> DbgVariableRecord DPVal -> DbgVarRec DPV -> DVR ``` Following the previous rename patches, it should be the case that there are no instances of any of these strings that are meant to refer to the general case of DbgRecords, or anything other than the DPValue class. The idea behind this patch is therefore that pure string substitution is correct in all cases as long as these assumptions hold.
823 lines
37 KiB
C++
823 lines
37 KiB
C++
//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
///
|
|
/// This file provides internal interfaces used to implement the InstCombine.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
|
|
#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <cassert>
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
#include "llvm/Transforms/Utils/InstructionWorklist.h"
|
|
|
|
using namespace llvm::PatternMatch;
|
|
|
|
// As a default, let's assume that we want to be aggressive,
|
|
// and attempt to traverse with no limits in attempt to sink negation.
|
|
static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
|
|
|
|
// Let's guesstimate that most often we will end up visiting/producing
|
|
// fairly small number of new instructions.
|
|
static constexpr unsigned NegatorMaxNodesSSO = 16;
|
|
|
|
namespace llvm {
|
|
|
|
class AAResults;
|
|
class APInt;
|
|
class AssumptionCache;
|
|
class BlockFrequencyInfo;
|
|
class DataLayout;
|
|
class DominatorTree;
|
|
class GEPOperator;
|
|
class GlobalVariable;
|
|
class LoopInfo;
|
|
class OptimizationRemarkEmitter;
|
|
class ProfileSummaryInfo;
|
|
class TargetLibraryInfo;
|
|
class User;
|
|
|
|
class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
|
|
: public InstCombiner,
|
|
public InstVisitor<InstCombinerImpl, Instruction *> {
|
|
public:
|
|
InstCombinerImpl(InstructionWorklist &Worklist, BuilderTy &Builder,
|
|
bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
|
|
TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
|
|
DominatorTree &DT, OptimizationRemarkEmitter &ORE,
|
|
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
|
|
const DataLayout &DL, LoopInfo *LI)
|
|
: InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
|
|
BFI, PSI, DL, LI) {}
|
|
|
|
virtual ~InstCombinerImpl() = default;
|
|
|
|
/// Perform early cleanup and prepare the InstCombine worklist.
|
|
bool prepareWorklist(Function &F,
|
|
ReversePostOrderTraversal<BasicBlock *> &RPOT);
|
|
|
|
/// Run the combiner over the entire worklist until it is empty.
|
|
///
|
|
/// \returns true if the IR is changed.
|
|
bool run();
|
|
|
|
// Visitation implementation - Implement instruction combining for different
|
|
// instruction types. The semantics are as follows:
|
|
// Return Value:
|
|
// null - No change was made
|
|
// I - Change was made, I is still valid, I may be dead though
|
|
// otherwise - Change was made, replace I with returned instruction
|
|
//
|
|
Instruction *visitFNeg(UnaryOperator &I);
|
|
Instruction *visitAdd(BinaryOperator &I);
|
|
Instruction *visitFAdd(BinaryOperator &I);
|
|
Value *OptimizePointerDifference(
|
|
Value *LHS, Value *RHS, Type *Ty, bool isNUW);
|
|
Instruction *visitSub(BinaryOperator &I);
|
|
Instruction *visitFSub(BinaryOperator &I);
|
|
Instruction *visitMul(BinaryOperator &I);
|
|
Instruction *foldPowiReassoc(BinaryOperator &I);
|
|
Instruction *foldFMulReassoc(BinaryOperator &I);
|
|
Instruction *visitFMul(BinaryOperator &I);
|
|
Instruction *visitURem(BinaryOperator &I);
|
|
Instruction *visitSRem(BinaryOperator &I);
|
|
Instruction *visitFRem(BinaryOperator &I);
|
|
bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
|
|
Instruction *commonIRemTransforms(BinaryOperator &I);
|
|
Instruction *commonIDivTransforms(BinaryOperator &I);
|
|
Instruction *visitUDiv(BinaryOperator &I);
|
|
Instruction *visitSDiv(BinaryOperator &I);
|
|
Instruction *visitFDiv(BinaryOperator &I);
|
|
Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
|
|
Instruction *visitAnd(BinaryOperator &I);
|
|
Instruction *visitOr(BinaryOperator &I);
|
|
bool sinkNotIntoLogicalOp(Instruction &I);
|
|
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I);
|
|
Instruction *visitXor(BinaryOperator &I);
|
|
Instruction *visitShl(BinaryOperator &I);
|
|
Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
|
|
BinaryOperator *Sh0, const SimplifyQuery &SQ,
|
|
bool AnalyzeForSignBitExtraction = false);
|
|
Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
|
|
BinaryOperator &I);
|
|
Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
|
|
BinaryOperator &OldAShr);
|
|
Instruction *visitAShr(BinaryOperator &I);
|
|
Instruction *visitLShr(BinaryOperator &I);
|
|
Instruction *commonShiftTransforms(BinaryOperator &I);
|
|
Instruction *visitFCmpInst(FCmpInst &I);
|
|
CmpInst *canonicalizeICmpPredicate(CmpInst &I);
|
|
Instruction *visitICmpInst(ICmpInst &I);
|
|
Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
|
|
BinaryOperator &I);
|
|
Instruction *commonCastTransforms(CastInst &CI);
|
|
Instruction *visitTrunc(TruncInst &CI);
|
|
Instruction *visitZExt(ZExtInst &Zext);
|
|
Instruction *visitSExt(SExtInst &Sext);
|
|
Instruction *visitFPTrunc(FPTruncInst &CI);
|
|
Instruction *visitFPExt(CastInst &CI);
|
|
Instruction *visitFPToUI(FPToUIInst &FI);
|
|
Instruction *visitFPToSI(FPToSIInst &FI);
|
|
Instruction *visitUIToFP(CastInst &CI);
|
|
Instruction *visitSIToFP(CastInst &CI);
|
|
Instruction *visitPtrToInt(PtrToIntInst &CI);
|
|
Instruction *visitIntToPtr(IntToPtrInst &CI);
|
|
Instruction *visitBitCast(BitCastInst &CI);
|
|
Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
|
|
Instruction *foldItoFPtoI(CastInst &FI);
|
|
Instruction *visitSelectInst(SelectInst &SI);
|
|
Instruction *visitCallInst(CallInst &CI);
|
|
Instruction *visitInvokeInst(InvokeInst &II);
|
|
Instruction *visitCallBrInst(CallBrInst &CBI);
|
|
|
|
Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
|
|
Instruction *visitPHINode(PHINode &PN);
|
|
Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
|
|
Instruction *visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src);
|
|
Instruction *visitAllocaInst(AllocaInst &AI);
|
|
Instruction *visitAllocSite(Instruction &FI);
|
|
Instruction *visitFree(CallInst &FI, Value *FreedOp);
|
|
Instruction *visitLoadInst(LoadInst &LI);
|
|
Instruction *visitStoreInst(StoreInst &SI);
|
|
Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
|
|
Instruction *visitUnconditionalBranchInst(BranchInst &BI);
|
|
Instruction *visitBranchInst(BranchInst &BI);
|
|
Instruction *visitFenceInst(FenceInst &FI);
|
|
Instruction *visitSwitchInst(SwitchInst &SI);
|
|
Instruction *visitReturnInst(ReturnInst &RI);
|
|
Instruction *visitUnreachableInst(UnreachableInst &I);
|
|
Instruction *
|
|
foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
|
|
Instruction *visitInsertValueInst(InsertValueInst &IV);
|
|
Instruction *visitInsertElementInst(InsertElementInst &IE);
|
|
Instruction *visitExtractElementInst(ExtractElementInst &EI);
|
|
Instruction *simplifyBinOpSplats(ShuffleVectorInst &SVI);
|
|
Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
|
|
Instruction *visitExtractValueInst(ExtractValueInst &EV);
|
|
Instruction *visitLandingPadInst(LandingPadInst &LI);
|
|
Instruction *visitVAEndInst(VAEndInst &I);
|
|
Value *pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI);
|
|
bool freezeOtherUses(FreezeInst &FI);
|
|
Instruction *foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN);
|
|
Instruction *visitFreeze(FreezeInst &I);
|
|
|
|
/// Specify what to return for unhandled instructions.
|
|
Instruction *visitInstruction(Instruction &I) { return nullptr; }
|
|
|
|
/// True when DB dominates all uses of DI except UI.
|
|
/// UI must be in the same block as DI.
|
|
/// The routine checks that the DI parent and DB are different.
|
|
bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
|
|
const BasicBlock *DB) const;
|
|
|
|
/// Try to replace select with select operand SIOpd in SI-ICmp sequence.
|
|
bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
|
|
const unsigned SIOpd);
|
|
|
|
LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
|
|
const Twine &Suffix = "");
|
|
|
|
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF,
|
|
FPClassTest Interested = fcAllFlags,
|
|
const Instruction *CtxI = nullptr,
|
|
unsigned Depth = 0) const {
|
|
return llvm::computeKnownFPClass(
|
|
Val, FMF, Interested, Depth,
|
|
getSimplifyQuery().getWithInstruction(CtxI));
|
|
}
|
|
|
|
KnownFPClass computeKnownFPClass(Value *Val,
|
|
FPClassTest Interested = fcAllFlags,
|
|
const Instruction *CtxI = nullptr,
|
|
unsigned Depth = 0) const {
|
|
return llvm::computeKnownFPClass(
|
|
Val, Interested, Depth, getSimplifyQuery().getWithInstruction(CtxI));
|
|
}
|
|
|
|
/// Check if fmul \p MulVal, +0.0 will yield +0.0 (or signed zero is
|
|
/// ignorable).
|
|
bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF,
|
|
const Instruction *CtxI) const;
|
|
|
|
Constant *getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp) {
|
|
Constant *TruncC = ConstantExpr::getTrunc(C, TruncTy);
|
|
Constant *ExtTruncC =
|
|
ConstantFoldCastOperand(ExtOp, TruncC, C->getType(), DL);
|
|
if (ExtTruncC && ExtTruncC == C)
|
|
return TruncC;
|
|
return nullptr;
|
|
}
|
|
|
|
Constant *getLosslessUnsignedTrunc(Constant *C, Type *TruncTy) {
|
|
return getLosslessTrunc(C, TruncTy, Instruction::ZExt);
|
|
}
|
|
|
|
Constant *getLosslessSignedTrunc(Constant *C, Type *TruncTy) {
|
|
return getLosslessTrunc(C, TruncTy, Instruction::SExt);
|
|
}
|
|
|
|
std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>>
|
|
convertOrOfShiftsToFunnelShift(Instruction &Or);
|
|
|
|
private:
|
|
bool annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
|
|
bool isDesirableIntType(unsigned BitWidth) const;
|
|
bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
|
|
bool shouldChangeType(Type *From, Type *To) const;
|
|
Value *dyn_castNegVal(Value *V) const;
|
|
|
|
/// Classify whether a cast is worth optimizing.
|
|
///
|
|
/// This is a helper to decide whether the simplification of
|
|
/// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
|
|
///
|
|
/// \param CI The cast we are interested in.
|
|
///
|
|
/// \return true if this cast actually results in any code being generated and
|
|
/// if it cannot already be eliminated by some other transformation.
|
|
bool shouldOptimizeCast(CastInst *CI);
|
|
|
|
/// Try to optimize a sequence of instructions checking if an operation
|
|
/// on LHS and RHS overflows.
|
|
///
|
|
/// If this overflow check is done via one of the overflow check intrinsics,
|
|
/// then CtxI has to be the call instruction calling that intrinsic. If this
|
|
/// overflow check is done by arithmetic followed by a compare, then CtxI has
|
|
/// to be the arithmetic instruction.
|
|
///
|
|
/// If a simplification is possible, stores the simplified result of the
|
|
/// operation in OperationResult and result of the overflow check in
|
|
/// OverflowResult, and return true. If no simplification is possible,
|
|
/// returns false.
|
|
bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
|
|
Value *LHS, Value *RHS,
|
|
Instruction &CtxI, Value *&OperationResult,
|
|
Constant *&OverflowResult);
|
|
|
|
Instruction *visitCallBase(CallBase &Call);
|
|
Instruction *tryOptimizeCall(CallInst *CI);
|
|
bool transformConstExprCastCall(CallBase &Call);
|
|
Instruction *transformCallThroughTrampoline(CallBase &Call,
|
|
IntrinsicInst &Tramp);
|
|
|
|
// Return (a, b) if (LHS, RHS) is known to be (a, b) or (b, a).
|
|
// Otherwise, return std::nullopt
|
|
// Currently it matches:
|
|
// - LHS = (select c, a, b), RHS = (select c, b, a)
|
|
// - LHS = (phi [a, BB0], [b, BB1]), RHS = (phi [b, BB0], [a, BB1])
|
|
// - LHS = min(a, b), RHS = max(a, b)
|
|
std::optional<std::pair<Value *, Value *>> matchSymmetricPair(Value *LHS,
|
|
Value *RHS);
|
|
|
|
Value *simplifyMaskedLoad(IntrinsicInst &II);
|
|
Instruction *simplifyMaskedStore(IntrinsicInst &II);
|
|
Instruction *simplifyMaskedGather(IntrinsicInst &II);
|
|
Instruction *simplifyMaskedScatter(IntrinsicInst &II);
|
|
|
|
/// Transform (zext icmp) to bitwise / integer operations in order to
|
|
/// eliminate it.
|
|
///
|
|
/// \param ICI The icmp of the (zext icmp) pair we are interested in.
|
|
/// \parem CI The zext of the (zext icmp) pair we are interested in.
|
|
///
|
|
/// \return null if the transformation cannot be performed. If the
|
|
/// transformation can be performed the new instruction that replaces the
|
|
/// (zext icmp) pair will be returned.
|
|
Instruction *transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext);
|
|
|
|
Instruction *transformSExtICmp(ICmpInst *Cmp, SExtInst &Sext);
|
|
|
|
bool willNotOverflowSignedAdd(const WithCache<const Value *> &LHS,
|
|
const WithCache<const Value *> &RHS,
|
|
const Instruction &CxtI) const {
|
|
return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
|
|
OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
bool willNotOverflowUnsignedAdd(const WithCache<const Value *> &LHS,
|
|
const WithCache<const Value *> &RHS,
|
|
const Instruction &CxtI) const {
|
|
return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
|
|
OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
|
|
const Instruction &CxtI, bool IsSigned) const {
|
|
return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
|
|
: willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
|
|
}
|
|
|
|
bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
|
|
const Instruction &CxtI) const {
|
|
return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
|
|
OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
|
|
const Instruction &CxtI) const {
|
|
return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
|
|
OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
bool willNotOverflowSub(const Value *LHS, const Value *RHS,
|
|
const Instruction &CxtI, bool IsSigned) const {
|
|
return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
|
|
: willNotOverflowUnsignedSub(LHS, RHS, CxtI);
|
|
}
|
|
|
|
bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
|
|
const Instruction &CxtI) const {
|
|
return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
|
|
OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
|
|
const Instruction &CxtI) const {
|
|
return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
|
|
OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
bool willNotOverflowMul(const Value *LHS, const Value *RHS,
|
|
const Instruction &CxtI, bool IsSigned) const {
|
|
return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
|
|
: willNotOverflowUnsignedMul(LHS, RHS, CxtI);
|
|
}
|
|
|
|
bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
|
|
const Value *RHS, const Instruction &CxtI,
|
|
bool IsSigned) const {
|
|
switch (Opcode) {
|
|
case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
|
|
case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
|
|
case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
|
|
default: llvm_unreachable("Unexpected opcode for overflow query");
|
|
}
|
|
}
|
|
|
|
Value *EmitGEPOffset(User *GEP);
|
|
Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
|
|
Instruction *foldBitcastExtElt(ExtractElementInst &ExtElt);
|
|
Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
|
|
Instruction *foldFBinOpOfIntCasts(BinaryOperator &I);
|
|
// Should only be called by `foldFBinOpOfIntCasts`.
|
|
Instruction *foldFBinOpOfIntCastsFromSign(
|
|
BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
|
|
Constant *Op1FpC, SmallVectorImpl<WithCache<const Value *>> &OpsKnown);
|
|
Instruction *foldBinopOfSextBoolToSelect(BinaryOperator &I);
|
|
Instruction *narrowBinOp(TruncInst &Trunc);
|
|
Instruction *narrowMaskedBinOp(BinaryOperator &And);
|
|
Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
|
|
Instruction *narrowFunnelShift(TruncInst &Trunc);
|
|
Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
|
|
Instruction *matchSAddSubSat(IntrinsicInst &MinMax1);
|
|
Instruction *foldNot(BinaryOperator &I);
|
|
Instruction *foldBinOpOfDisplacedShifts(BinaryOperator &I);
|
|
|
|
/// Determine if a pair of casts can be replaced by a single cast.
|
|
///
|
|
/// \param CI1 The first of a pair of casts.
|
|
/// \param CI2 The second of a pair of casts.
|
|
///
|
|
/// \return 0 if the cast pair cannot be eliminated, otherwise returns an
|
|
/// Instruction::CastOps value for a cast that can replace the pair, casting
|
|
/// CI1->getSrcTy() to CI2->getDstTy().
|
|
///
|
|
/// \see CastInst::isEliminableCastPair
|
|
Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
|
|
const CastInst *CI2);
|
|
Value *simplifyIntToPtrRoundTripCast(Value *Val);
|
|
|
|
Value *foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &I,
|
|
bool IsAnd, bool IsLogical = false);
|
|
Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
|
|
|
|
Value *foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd);
|
|
|
|
Value *foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, ICmpInst *ICmp2,
|
|
bool IsAnd);
|
|
|
|
/// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
|
|
/// NOTE: Unlike most of instcombine, this returns a Value which should
|
|
/// already be inserted into the function.
|
|
Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd,
|
|
bool IsLogicalSelect = false);
|
|
|
|
Instruction *foldLogicOfIsFPClass(BinaryOperator &Operator, Value *LHS,
|
|
Value *RHS);
|
|
|
|
Instruction *
|
|
canonicalizeConditionalNegationViaMathToSelect(BinaryOperator &i);
|
|
|
|
Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
|
|
Instruction *CxtI, bool IsAnd,
|
|
bool IsLogical = false);
|
|
Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D,
|
|
bool InvertFalseVal = false);
|
|
Value *getSelectCondition(Value *A, Value *B, bool ABIsTheSame);
|
|
|
|
Instruction *foldLShrOverflowBit(BinaryOperator &I);
|
|
Instruction *foldExtractOfOverflowIntrinsic(ExtractValueInst &EV);
|
|
Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
|
|
Instruction *foldIntrinsicIsFPClass(IntrinsicInst &II);
|
|
Instruction *foldFPSignBitOps(BinaryOperator &I);
|
|
Instruction *foldFDivConstantDivisor(BinaryOperator &I);
|
|
|
|
// Optimize one of these forms:
|
|
// and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
|
|
// or i1 Op, SI / select i1 Op, i1 true, i1 SI (if IsAnd = false)
|
|
// into simplier select instruction using isImpliedCondition.
|
|
Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
|
|
bool IsAnd);
|
|
|
|
Instruction *hoistFNegAboveFMulFDiv(Value *FNegOp, Instruction &FMFSource);
|
|
|
|
public:
|
|
/// Create and insert the idiom we use to indicate a block is unreachable
|
|
/// without having to rewrite the CFG from within InstCombine.
|
|
void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
|
|
auto &Ctx = InsertAt->getContext();
|
|
auto *SI = new StoreInst(ConstantInt::getTrue(Ctx),
|
|
PoisonValue::get(PointerType::getUnqual(Ctx)),
|
|
/*isVolatile*/ false, Align(1));
|
|
InsertNewInstBefore(SI, InsertAt->getIterator());
|
|
}
|
|
|
|
/// Combiner aware instruction erasure.
|
|
///
|
|
/// When dealing with an instruction that has side effects or produces a void
|
|
/// value, we can't rely on DCE to delete the instruction. Instead, visit
|
|
/// methods should return the value returned by this function.
|
|
Instruction *eraseInstFromFunction(Instruction &I) override {
|
|
LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
|
|
assert(I.use_empty() && "Cannot erase instruction that is used!");
|
|
salvageDebugInfo(I);
|
|
|
|
// Make sure that we reprocess all operands now that we reduced their
|
|
// use counts.
|
|
SmallVector<Value *> Ops(I.operands());
|
|
Worklist.remove(&I);
|
|
DC.removeValue(&I);
|
|
I.eraseFromParent();
|
|
for (Value *Op : Ops)
|
|
Worklist.handleUseCountDecrement(Op);
|
|
MadeIRChange = true;
|
|
return nullptr; // Don't do anything with FI
|
|
}
|
|
|
|
OverflowResult computeOverflow(
|
|
Instruction::BinaryOps BinaryOp, bool IsSigned,
|
|
Value *LHS, Value *RHS, Instruction *CxtI) const;
|
|
|
|
/// Performs a few simplifications for operators which are associative
|
|
/// or commutative.
|
|
bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
|
|
|
|
/// Tries to simplify binary operations which some other binary
|
|
/// operation distributes over.
|
|
///
|
|
/// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
|
|
/// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
|
|
/// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
|
|
/// value, or null if it didn't simplify.
|
|
Value *foldUsingDistributiveLaws(BinaryOperator &I);
|
|
|
|
/// Tries to simplify add operations using the definition of remainder.
|
|
///
|
|
/// The definition of remainder is X % C = X - (X / C ) * C. The add
|
|
/// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
|
|
/// X % (C0 * C1)
|
|
Value *SimplifyAddWithRemainder(BinaryOperator &I);
|
|
|
|
// Binary Op helper for select operations where the expression can be
|
|
// efficiently reorganized.
|
|
Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
|
|
Value *RHS);
|
|
|
|
// If `I` has operand `(ctpop (not x))`, fold `I` with `(sub nuw nsw
|
|
// BitWidth(x), (ctpop x))`.
|
|
Instruction *tryFoldInstWithCtpopWithNot(Instruction *I);
|
|
|
|
// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
|
|
// -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
|
|
// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
|
|
// -> (BinOp (logic_shift (BinOp X, Y)), Mask)
|
|
Instruction *foldBinOpShiftWithShift(BinaryOperator &I);
|
|
|
|
/// Tries to simplify binops of select and cast of the select condition.
|
|
///
|
|
/// (Binop (cast C), (select C, T, F))
|
|
/// -> (select C, C0, C1)
|
|
Instruction *foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I);
|
|
|
|
/// This tries to simplify binary operations by factorizing out common terms
|
|
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
|
|
Value *tryFactorizationFolds(BinaryOperator &I);
|
|
|
|
/// Match a select chain which produces one of three values based on whether
|
|
/// the LHS is less than, equal to, or greater than RHS respectively.
|
|
/// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
|
|
/// Equal and Greater values are saved in the matching process and returned to
|
|
/// the caller.
|
|
bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
|
|
ConstantInt *&Less, ConstantInt *&Equal,
|
|
ConstantInt *&Greater);
|
|
|
|
/// Attempts to replace V with a simpler value based on the demanded
|
|
/// bits.
|
|
Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
|
|
unsigned Depth, Instruction *CxtI);
|
|
bool SimplifyDemandedBits(Instruction *I, unsigned Op,
|
|
const APInt &DemandedMask, KnownBits &Known,
|
|
unsigned Depth = 0) override;
|
|
|
|
/// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
|
|
/// bits. It also tries to handle simplifications that can be done based on
|
|
/// DemandedMask, but without modifying the Instruction.
|
|
Value *SimplifyMultipleUseDemandedBits(Instruction *I,
|
|
const APInt &DemandedMask,
|
|
KnownBits &Known,
|
|
unsigned Depth, Instruction *CxtI);
|
|
|
|
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
|
|
/// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
|
|
Value *simplifyShrShlDemandedBits(
|
|
Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
|
|
const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
|
|
|
|
/// Tries to simplify operands to an integer instruction based on its
|
|
/// demanded bits.
|
|
bool SimplifyDemandedInstructionBits(Instruction &Inst);
|
|
bool SimplifyDemandedInstructionBits(Instruction &Inst, KnownBits &Known);
|
|
|
|
Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
|
|
APInt &PoisonElts, unsigned Depth = 0,
|
|
bool AllowMultipleUsers = false) override;
|
|
|
|
/// Attempts to replace V with a simpler value based on the demanded
|
|
/// floating-point classes
|
|
Value *SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask,
|
|
KnownFPClass &Known, unsigned Depth,
|
|
Instruction *CxtI);
|
|
bool SimplifyDemandedFPClass(Instruction *I, unsigned Op,
|
|
FPClassTest DemandedMask, KnownFPClass &Known,
|
|
unsigned Depth = 0);
|
|
|
|
/// Canonicalize the position of binops relative to shufflevector.
|
|
Instruction *foldVectorBinop(BinaryOperator &Inst);
|
|
Instruction *foldVectorSelect(SelectInst &Sel);
|
|
Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf);
|
|
|
|
/// Given a binary operator, cast instruction, or select which has a PHI node
|
|
/// as operand #0, see if we can fold the instruction into the PHI (which is
|
|
/// only possible if all operands to the PHI are constants).
|
|
Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
|
|
|
|
/// For a binary operator with 2 phi operands, try to hoist the binary
|
|
/// operation before the phi. This can result in fewer instructions in
|
|
/// patterns where at least one set of phi operands simplifies.
|
|
/// Example:
|
|
/// BB3: binop (phi [X, BB1], [C1, BB2]), (phi [Y, BB1], [C2, BB2])
|
|
/// -->
|
|
/// BB1: BO = binop X, Y
|
|
/// BB3: phi [BO, BB1], [(binop C1, C2), BB2]
|
|
Instruction *foldBinopWithPhiOperands(BinaryOperator &BO);
|
|
|
|
/// Given an instruction with a select as one operand and a constant as the
|
|
/// other operand, try to fold the binary operator into the select arguments.
|
|
/// This also works for Cast instructions, which obviously do not have a
|
|
/// second operand.
|
|
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
|
|
bool FoldWithMultiUse = false);
|
|
|
|
/// This is a convenience wrapper function for the above two functions.
|
|
Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
|
|
|
|
Instruction *foldAddWithConstant(BinaryOperator &Add);
|
|
|
|
Instruction *foldSquareSumInt(BinaryOperator &I);
|
|
Instruction *foldSquareSumFP(BinaryOperator &I);
|
|
|
|
/// Try to rotate an operation below a PHI node, using PHI nodes for
|
|
/// its operands.
|
|
Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
|
|
Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
|
|
Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
|
|
Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
|
|
Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
|
|
Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
|
|
Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
|
|
Instruction *foldPHIArgIntToPtrToPHI(PHINode &PN);
|
|
|
|
/// If an integer typed PHI has only one use which is an IntToPtr operation,
|
|
/// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
|
|
/// insert a new pointer typed PHI and replace the original one.
|
|
bool foldIntegerTypedPHI(PHINode &PN);
|
|
|
|
/// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
|
|
/// folded operation.
|
|
void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
|
|
|
|
Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
|
|
ICmpInst::Predicate Cond, Instruction &I);
|
|
Instruction *foldSelectICmp(ICmpInst::Predicate Pred, SelectInst *SI,
|
|
Value *RHS, const ICmpInst &I);
|
|
bool foldAllocaCmp(AllocaInst *Alloca);
|
|
Instruction *foldCmpLoadFromIndexedGlobal(LoadInst *LI,
|
|
GetElementPtrInst *GEP,
|
|
GlobalVariable *GV, CmpInst &ICI,
|
|
ConstantInt *AndCst = nullptr);
|
|
Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
|
|
Constant *RHSC);
|
|
Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
|
|
ICmpInst::Predicate Pred);
|
|
Instruction *foldICmpWithCastOp(ICmpInst &ICmp);
|
|
Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp);
|
|
|
|
Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
|
|
Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
|
|
Instruction *foldICmpWithConstant(ICmpInst &Cmp);
|
|
Instruction *foldICmpUsingBoolRange(ICmpInst &I);
|
|
Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
|
|
Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
|
|
Instruction *foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
|
|
const APInt &C);
|
|
Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
|
|
Instruction *foldICmpWithMinMax(Instruction &I, MinMaxIntrinsic *MinMax,
|
|
Value *Z, ICmpInst::Predicate Pred);
|
|
Instruction *foldICmpEquality(ICmpInst &Cmp);
|
|
Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
|
|
Instruction *foldSignBitTest(ICmpInst &I);
|
|
Instruction *foldICmpWithZero(ICmpInst &Cmp);
|
|
|
|
Value *foldMultiplicationOverflowCheck(ICmpInst &Cmp);
|
|
|
|
Instruction *foldICmpBinOpWithConstant(ICmpInst &Cmp, BinaryOperator *BO,
|
|
const APInt &C);
|
|
Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
|
|
ConstantInt *C);
|
|
Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
|
|
const APInt &C);
|
|
Instruction *foldICmpTruncWithTruncOrExt(ICmpInst &Cmp,
|
|
const SimplifyQuery &Q);
|
|
Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
|
|
const APInt &C);
|
|
Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
|
|
const APInt &C);
|
|
Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
|
|
const APInt &C);
|
|
Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
|
|
const APInt &C);
|
|
Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
|
|
const APInt &C);
|
|
Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
|
|
const APInt &C);
|
|
Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
|
|
const APInt &C);
|
|
Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
|
|
const APInt &C);
|
|
Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
|
|
const APInt &C);
|
|
Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
|
|
const APInt &C);
|
|
Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
|
|
const APInt &C);
|
|
Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
|
|
const APInt &C1);
|
|
Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
|
|
const APInt &C1, const APInt &C2);
|
|
Instruction *foldICmpXorShiftConst(ICmpInst &Cmp, BinaryOperator *Xor,
|
|
const APInt &C);
|
|
Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
|
|
const APInt &C2);
|
|
Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
|
|
const APInt &C2);
|
|
|
|
Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
|
|
BinaryOperator *BO,
|
|
const APInt &C);
|
|
Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
|
|
const APInt &C);
|
|
Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
|
|
const APInt &C);
|
|
Instruction *foldICmpBitCast(ICmpInst &Cmp);
|
|
Instruction *foldICmpWithTrunc(ICmpInst &Cmp);
|
|
Instruction *foldICmpCommutative(ICmpInst::Predicate Pred, Value *Op0,
|
|
Value *Op1, ICmpInst &CxtI);
|
|
|
|
// Helpers of visitSelectInst().
|
|
Instruction *foldSelectOfBools(SelectInst &SI);
|
|
Instruction *foldSelectExtConst(SelectInst &Sel);
|
|
Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
|
|
Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
|
|
Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
|
|
Value *A, Value *B, Instruction &Outer,
|
|
SelectPatternFlavor SPF2, Value *C);
|
|
Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
|
|
Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
|
|
bool replaceInInstruction(Value *V, Value *Old, Value *New,
|
|
unsigned Depth = 0);
|
|
|
|
Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
|
|
bool isSigned, bool Inside);
|
|
bool mergeStoreIntoSuccessor(StoreInst &SI);
|
|
|
|
/// Given an initial instruction, check to see if it is the root of a
|
|
/// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
|
|
/// intrinsic.
|
|
Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
|
|
bool MatchBitReversals);
|
|
|
|
Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
|
|
Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
|
|
|
|
Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
|
|
|
|
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock);
|
|
void tryToSinkInstructionDbgValues(
|
|
Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
|
|
BasicBlock *DestBlock, SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers);
|
|
void tryToSinkInstructionDbgVariableRecords(
|
|
Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
|
|
BasicBlock *DestBlock, SmallVectorImpl<DbgVariableRecord *> &DPUsers);
|
|
|
|
bool removeInstructionsBeforeUnreachable(Instruction &I);
|
|
void addDeadEdge(BasicBlock *From, BasicBlock *To,
|
|
SmallVectorImpl<BasicBlock *> &Worklist);
|
|
void handleUnreachableFrom(Instruction *I,
|
|
SmallVectorImpl<BasicBlock *> &Worklist);
|
|
void handlePotentiallyDeadBlocks(SmallVectorImpl<BasicBlock *> &Worklist);
|
|
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc);
|
|
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser = nullptr);
|
|
};
|
|
|
|
class Negator final {
|
|
/// Top-to-bottom, def-to-use negated instruction tree we produced.
|
|
SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
|
|
|
|
using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
|
|
BuilderTy Builder;
|
|
|
|
const bool IsTrulyNegation;
|
|
|
|
SmallDenseMap<Value *, Value *> NegationsCache;
|
|
|
|
Negator(LLVMContext &C, const DataLayout &DL, bool IsTrulyNegation);
|
|
|
|
#if LLVM_ENABLE_STATS
|
|
unsigned NumValuesVisitedInThisNegator = 0;
|
|
~Negator();
|
|
#endif
|
|
|
|
using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
|
|
Value * /*NegatedRoot*/>;
|
|
|
|
std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
|
|
|
|
[[nodiscard]] Value *visitImpl(Value *V, bool IsNSW, unsigned Depth);
|
|
|
|
[[nodiscard]] Value *negate(Value *V, bool IsNSW, unsigned Depth);
|
|
|
|
/// Recurse depth-first and attempt to sink the negation.
|
|
/// FIXME: use worklist?
|
|
[[nodiscard]] std::optional<Result> run(Value *Root, bool IsNSW);
|
|
|
|
Negator(const Negator &) = delete;
|
|
Negator(Negator &&) = delete;
|
|
Negator &operator=(const Negator &) = delete;
|
|
Negator &operator=(Negator &&) = delete;
|
|
|
|
public:
|
|
/// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
|
|
/// otherwise returns negated value.
|
|
[[nodiscard]] static Value *Negate(bool LHSIsZero, bool IsNSW, Value *Root,
|
|
InstCombinerImpl &IC);
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#undef DEBUG_TYPE
|
|
|
|
#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
|