Files
clang-p2996/llvm/tools/llvm-exegesis/lib/SerialSnippetGenerator.cpp
Pavel Kosov 37ef640785 [llvm-exegesis] Prevent llvm-exegesis from using unsupported opcodes
When generating snippets for AArch64 with --opcode-index=-1, the code
generator asserts on opcodes that are not supported according to CPU
features.

The same assertion can be triggered even when generating a serial
snippet for a supported opcode if SERIAL_VIA_NON_MEMORY_INSTR execution
mode is used and an unsupported instruction is chosen as the "other
instruction". Unlike the first case, this one may result in flaky
failures because the other instruction is randomly chosen from the
instructions suitable for serializing execution.

This patch adjusts TableGen emitter for *GenInstrInfo.inc to make
possible to query for opcode availability instead of just asserting on
unsupported ones.

~~

Huawei RRI, OS Lab

Reviewed By: courbet

Differential Revision: https://reviews.llvm.org/D146303
2023-08-02 15:44:14 +03:00

187 lines
7.3 KiB
C++

//===-- SerialSnippetGenerator.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SerialSnippetGenerator.h"
#include "CodeTemplate.h"
#include "MCInstrDescView.h"
#include "Target.h"
#include <algorithm>
#include <numeric>
#include <vector>
namespace llvm {
namespace exegesis {
struct ExecutionClass {
ExecutionMode Mask;
const char *Description;
} static const kExecutionClasses[] = {
{ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS |
ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS,
"Repeating a single implicitly serial instruction"},
{ExecutionMode::SERIAL_VIA_EXPLICIT_REGS,
"Repeating a single explicitly serial instruction"},
{ExecutionMode::SERIAL_VIA_MEMORY_INSTR |
ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR,
"Repeating two instructions"},
};
static constexpr size_t kMaxAliasingInstructions = 10;
static std::vector<const Instruction *>
computeAliasingInstructions(const LLVMState &State, const Instruction *Instr,
size_t MaxAliasingInstructions,
const BitVector &ForbiddenRegisters) {
const auto &ET = State.getExegesisTarget();
const auto AvailableFeatures = State.getSubtargetInfo().getFeatureBits();
// Randomly iterate the set of instructions.
std::vector<unsigned> Opcodes;
Opcodes.resize(State.getInstrInfo().getNumOpcodes());
std::iota(Opcodes.begin(), Opcodes.end(), 0U);
llvm::shuffle(Opcodes.begin(), Opcodes.end(), randomGenerator());
std::vector<const Instruction *> AliasingInstructions;
for (const unsigned OtherOpcode : Opcodes) {
if (!ET.isOpcodeAvailable(OtherOpcode, AvailableFeatures))
continue;
if (OtherOpcode == Instr->Description.getOpcode())
continue;
const Instruction &OtherInstr = State.getIC().getInstr(OtherOpcode);
const MCInstrDesc &OtherInstrDesc = OtherInstr.Description;
// Ignore instructions that we cannot run.
if (OtherInstrDesc.isPseudo() || OtherInstrDesc.usesCustomInsertionHook() ||
OtherInstrDesc.isBranch() || OtherInstrDesc.isIndirectBranch() ||
OtherInstrDesc.isCall() || OtherInstrDesc.isReturn()) {
continue;
}
if (OtherInstr.hasMemoryOperands())
continue;
if (!ET.allowAsBackToBack(OtherInstr))
continue;
if (Instr->hasAliasingRegistersThrough(OtherInstr, ForbiddenRegisters))
AliasingInstructions.push_back(&OtherInstr);
if (AliasingInstructions.size() >= MaxAliasingInstructions)
break;
}
return AliasingInstructions;
}
static ExecutionMode getExecutionModes(const Instruction &Instr,
const BitVector &ForbiddenRegisters) {
ExecutionMode EM = ExecutionMode::UNKNOWN;
if (Instr.hasAliasingImplicitRegisters())
EM |= ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS;
if (Instr.hasTiedRegisters())
EM |= ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS;
if (Instr.hasMemoryOperands())
EM |= ExecutionMode::SERIAL_VIA_MEMORY_INSTR;
else {
if (Instr.hasAliasingRegisters(ForbiddenRegisters))
EM |= ExecutionMode::SERIAL_VIA_EXPLICIT_REGS;
if (Instr.hasOneUseOrOneDef())
EM |= ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR;
}
return EM;
}
static void appendCodeTemplates(const LLVMState &State,
InstructionTemplate Variant,
const BitVector &ForbiddenRegisters,
ExecutionMode ExecutionModeBit,
StringRef ExecutionClassDescription,
std::vector<CodeTemplate> &CodeTemplates) {
assert(isEnumValue(ExecutionModeBit) && "Bit must be a power of two");
switch (ExecutionModeBit) {
case ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS:
// Nothing to do, the instruction is always serial.
[[fallthrough]];
case ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS: {
// Picking whatever value for the tied variable will make the instruction
// serial.
CodeTemplate CT;
CT.Execution = ExecutionModeBit;
CT.Info = std::string(ExecutionClassDescription);
CT.Instructions.push_back(std::move(Variant));
CodeTemplates.push_back(std::move(CT));
return;
}
case ExecutionMode::SERIAL_VIA_MEMORY_INSTR: {
// Select back-to-back memory instruction.
// TODO: Implement me.
return;
}
case ExecutionMode::SERIAL_VIA_EXPLICIT_REGS: {
// Making the execution of this instruction serial by selecting one def
// register to alias with one use register.
const AliasingConfigurations SelfAliasing(
Variant.getInstr(), Variant.getInstr(), ForbiddenRegisters);
assert(!SelfAliasing.empty() && !SelfAliasing.hasImplicitAliasing() &&
"Instr must alias itself explicitly");
// This is a self aliasing instruction so defs and uses are from the same
// instance, hence twice Variant in the following call.
setRandomAliasing(SelfAliasing, Variant, Variant);
CodeTemplate CT;
CT.Execution = ExecutionModeBit;
CT.Info = std::string(ExecutionClassDescription);
CT.Instructions.push_back(std::move(Variant));
CodeTemplates.push_back(std::move(CT));
return;
}
case ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR: {
const Instruction &Instr = Variant.getInstr();
// Select back-to-back non-memory instruction.
for (const auto *OtherInstr : computeAliasingInstructions(
State, &Instr, kMaxAliasingInstructions, ForbiddenRegisters)) {
const AliasingConfigurations Forward(Instr, *OtherInstr,
ForbiddenRegisters);
const AliasingConfigurations Back(*OtherInstr, Instr, ForbiddenRegisters);
InstructionTemplate ThisIT(Variant);
InstructionTemplate OtherIT(OtherInstr);
if (!Forward.hasImplicitAliasing())
setRandomAliasing(Forward, ThisIT, OtherIT);
else if (!Back.hasImplicitAliasing())
setRandomAliasing(Back, OtherIT, ThisIT);
CodeTemplate CT;
CT.Execution = ExecutionModeBit;
CT.Info = std::string(ExecutionClassDescription);
CT.Instructions.push_back(std::move(ThisIT));
CT.Instructions.push_back(std::move(OtherIT));
CodeTemplates.push_back(std::move(CT));
}
return;
}
default:
llvm_unreachable("Unhandled enum value");
}
}
SerialSnippetGenerator::~SerialSnippetGenerator() = default;
Expected<std::vector<CodeTemplate>>
SerialSnippetGenerator::generateCodeTemplates(
InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
std::vector<CodeTemplate> Results;
const ExecutionMode EM =
getExecutionModes(Variant.getInstr(), ForbiddenRegisters);
for (const auto EC : kExecutionClasses) {
for (const auto ExecutionModeBit : getExecutionModeBits(EM & EC.Mask))
appendCodeTemplates(State, Variant, ForbiddenRegisters, ExecutionModeBit,
EC.Description, Results);
if (!Results.empty())
break;
}
if (Results.empty())
return make_error<Failure>(
"No strategy found to make the execution serial");
return std::move(Results);
}
} // namespace exegesis
} // namespace llvm