Files
clang-p2996/mlir/lib/Analysis/DataFlow/DenseAnalysis.cpp
drblallo 2bd6642533 [mlir][dataflow]Fix dense backward dataflow intraprocedural hook (#76865)
The dataflow analysis framework within MLIR allows to customize the
transfer function when a `call-like` operation is encuntered.

The check to see if the analysis was executed in intraprocedural mode
was executed after the check to see if the callee had the
CallableOpInterface, and thus intraprocedural analyses would behave as
interpocedural ones when performing indirect calls.

This commit fixes the issue by performing the check for
intraprocedurality first.

Dense forward analyses were already behaving correctly.
https://github.com/llvm/llvm-project/blob/main/mlir/lib/Analysis/DataFlow/DenseAnalysis.cpp#L63

Co-authored-by: massimo <mo.fioravanti@gmail.com>
2024-01-04 10:28:12 +01:00

470 lines
18 KiB
C++

//===- DenseAnalysis.cpp - Dense data-flow analysis -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/DenseAnalysis.h"
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/Region.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <optional>
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// AbstractDenseForwardDataFlowAnalysis
//===----------------------------------------------------------------------===//
LogicalResult AbstractDenseForwardDataFlowAnalysis::initialize(Operation *top) {
// Visit every operation and block.
processOperation(top);
for (Region &region : top->getRegions()) {
for (Block &block : region) {
visitBlock(&block);
for (Operation &op : block)
if (failed(initialize(&op)))
return failure();
}
}
return success();
}
LogicalResult AbstractDenseForwardDataFlowAnalysis::visit(ProgramPoint point) {
if (auto *op = llvm::dyn_cast_if_present<Operation *>(point))
processOperation(op);
else if (auto *block = llvm::dyn_cast_if_present<Block *>(point))
visitBlock(block);
else
return failure();
return success();
}
void AbstractDenseForwardDataFlowAnalysis::visitCallOperation(
CallOpInterface call, const AbstractDenseLattice &before,
AbstractDenseLattice *after) {
// Allow for customizing the behavior of calls to external symbols, including
// when the analysis is explicitly marked as non-interprocedural.
auto callable =
dyn_cast_if_present<CallableOpInterface>(call.resolveCallable());
if (!getSolverConfig().isInterprocedural() ||
(callable && !callable.getCallableRegion())) {
return visitCallControlFlowTransfer(
call, CallControlFlowAction::ExternalCallee, before, after);
}
const auto *predecessors =
getOrCreateFor<PredecessorState>(call.getOperation(), call);
// Otherwise, if not all return sites are known, then conservatively assume we
// can't reason about the data-flow.
if (!predecessors->allPredecessorsKnown())
return setToEntryState(after);
for (Operation *predecessor : predecessors->getKnownPredecessors()) {
// Get the lattices at callee return:
//
// func.func @callee() {
// ...
// return // predecessor
// // latticeAtCalleeReturn
// }
// func.func @caller() {
// ...
// call @callee
// // latticeAfterCall
// ...
// }
AbstractDenseLattice *latticeAfterCall = after;
const AbstractDenseLattice *latticeAtCalleeReturn =
getLatticeFor(call.getOperation(), predecessor);
visitCallControlFlowTransfer(call, CallControlFlowAction::ExitCallee,
*latticeAtCalleeReturn, latticeAfterCall);
}
}
void AbstractDenseForwardDataFlowAnalysis::processOperation(Operation *op) {
// If the containing block is not executable, bail out.
if (!getOrCreateFor<Executable>(op, op->getBlock())->isLive())
return;
// Get the dense lattice to update.
AbstractDenseLattice *after = getLattice(op);
// Get the dense state before the execution of the op.
const AbstractDenseLattice *before;
if (Operation *prev = op->getPrevNode())
before = getLatticeFor(op, prev);
else
before = getLatticeFor(op, op->getBlock());
// If this op implements region control-flow, then control-flow dictates its
// transfer function.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op))
return visitRegionBranchOperation(op, branch, after);
// If this is a call operation, then join its lattices across known return
// sites.
if (auto call = dyn_cast<CallOpInterface>(op))
return visitCallOperation(call, *before, after);
// Invoke the operation transfer function.
visitOperationImpl(op, *before, after);
}
void AbstractDenseForwardDataFlowAnalysis::visitBlock(Block *block) {
// If the block is not executable, bail out.
if (!getOrCreateFor<Executable>(block, block)->isLive())
return;
// Get the dense lattice to update.
AbstractDenseLattice *after = getLattice(block);
// The dense lattices of entry blocks are set by region control-flow or the
// callgraph.
if (block->isEntryBlock()) {
// Check if this block is the entry block of a callable region.
auto callable = dyn_cast<CallableOpInterface>(block->getParentOp());
if (callable && callable.getCallableRegion() == block->getParent()) {
const auto *callsites = getOrCreateFor<PredecessorState>(block, callable);
// If not all callsites are known, conservatively mark all lattices as
// having reached their pessimistic fixpoints. Do the same if
// interprocedural analysis is not enabled.
if (!callsites->allPredecessorsKnown() ||
!getSolverConfig().isInterprocedural())
return setToEntryState(after);
for (Operation *callsite : callsites->getKnownPredecessors()) {
// Get the dense lattice before the callsite.
const AbstractDenseLattice *before;
if (Operation *prev = callsite->getPrevNode())
before = getLatticeFor(block, prev);
else
before = getLatticeFor(block, callsite->getBlock());
visitCallControlFlowTransfer(cast<CallOpInterface>(callsite),
CallControlFlowAction::EnterCallee,
*before, after);
}
return;
}
// Check if we can reason about the control-flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp()))
return visitRegionBranchOperation(block, branch, after);
// Otherwise, we can't reason about the data-flow.
return setToEntryState(after);
}
// Join the state with the state after the block's predecessors.
for (Block::pred_iterator it = block->pred_begin(), e = block->pred_end();
it != e; ++it) {
// Skip control edges that aren't executable.
Block *predecessor = *it;
if (!getOrCreateFor<Executable>(
block, getProgramPoint<CFGEdge>(predecessor, block))
->isLive())
continue;
// Merge in the state from the predecessor's terminator.
join(after, *getLatticeFor(block, predecessor->getTerminator()));
}
}
void AbstractDenseForwardDataFlowAnalysis::visitRegionBranchOperation(
ProgramPoint point, RegionBranchOpInterface branch,
AbstractDenseLattice *after) {
// Get the terminator predecessors.
const auto *predecessors = getOrCreateFor<PredecessorState>(point, point);
assert(predecessors->allPredecessorsKnown() &&
"unexpected unresolved region successors");
for (Operation *op : predecessors->getKnownPredecessors()) {
const AbstractDenseLattice *before;
// If the predecessor is the parent, get the state before the parent.
if (op == branch) {
if (Operation *prev = op->getPrevNode())
before = getLatticeFor(point, prev);
else
before = getLatticeFor(point, op->getBlock());
// Otherwise, get the state after the terminator.
} else {
before = getLatticeFor(point, op);
}
// This function is called in two cases:
// 1. when visiting the block (point = block);
// 2. when visiting the parent operation (point = parent op).
// In both cases, we are looking for predecessor operations of the point,
// 1. predecessor may be the terminator of another block from another
// region (assuming that the block does belong to another region via an
// assertion) or the parent (when parent can transfer control to this
// region);
// 2. predecessor may be the terminator of a block that exits the
// region (when region transfers control to the parent) or the operation
// before the parent.
// In the latter case, just perform the join as it isn't the control flow
// affected by the region.
std::optional<unsigned> regionFrom =
op == branch ? std::optional<unsigned>()
: op->getBlock()->getParent()->getRegionNumber();
if (auto *toBlock = point.dyn_cast<Block *>()) {
unsigned regionTo = toBlock->getParent()->getRegionNumber();
visitRegionBranchControlFlowTransfer(branch, regionFrom, regionTo,
*before, after);
} else {
assert(point.get<Operation *>() == branch &&
"expected to be visiting the branch itself");
// Only need to call the arc transfer when the predecessor is the region
// or the op itself, not the previous op.
if (op->getParentOp() == branch || op == branch) {
visitRegionBranchControlFlowTransfer(
branch, regionFrom, /*regionTo=*/std::nullopt, *before, after);
} else {
join(after, *before);
}
}
}
}
const AbstractDenseLattice *
AbstractDenseForwardDataFlowAnalysis::getLatticeFor(ProgramPoint dependent,
ProgramPoint point) {
AbstractDenseLattice *state = getLattice(point);
addDependency(state, dependent);
return state;
}
//===----------------------------------------------------------------------===//
// AbstractDenseBackwardDataFlowAnalysis
//===----------------------------------------------------------------------===//
LogicalResult
AbstractDenseBackwardDataFlowAnalysis::initialize(Operation *top) {
// Visit every operation and block.
processOperation(top);
for (Region &region : top->getRegions()) {
for (Block &block : region) {
visitBlock(&block);
for (Operation &op : llvm::reverse(block)) {
if (failed(initialize(&op)))
return failure();
}
}
}
return success();
}
LogicalResult AbstractDenseBackwardDataFlowAnalysis::visit(ProgramPoint point) {
if (auto *op = llvm::dyn_cast_if_present<Operation *>(point))
processOperation(op);
else if (auto *block = llvm::dyn_cast_if_present<Block *>(point))
visitBlock(block);
else
return failure();
return success();
}
void AbstractDenseBackwardDataFlowAnalysis::visitCallOperation(
CallOpInterface call, const AbstractDenseLattice &after,
AbstractDenseLattice *before) {
// Find the callee.
Operation *callee = call.resolveCallable(&symbolTable);
auto callable = dyn_cast_or_null<CallableOpInterface>(callee);
// No region means the callee is only declared in this module.
// If that is the case or if the solver is not interprocedural,
// let the hook handle it.
if (!getSolverConfig().isInterprocedural() ||
(callable && (!callable.getCallableRegion() ||
callable.getCallableRegion()->empty()))) {
return visitCallControlFlowTransfer(
call, CallControlFlowAction::ExternalCallee, after, before);
}
if (!callable)
return setToExitState(before);
Region *region = callable.getCallableRegion();
// Call-level control flow specifies the data flow here.
//
// func.func @callee() {
// ^calleeEntryBlock:
// // latticeAtCalleeEntry
// ...
// }
// func.func @caller() {
// ...
// // latticeBeforeCall
// call @callee
// ...
// }
Block *calleeEntryBlock = &region->front();
ProgramPoint calleeEntry = calleeEntryBlock->empty()
? ProgramPoint(calleeEntryBlock)
: &calleeEntryBlock->front();
const AbstractDenseLattice &latticeAtCalleeEntry =
*getLatticeFor(call.getOperation(), calleeEntry);
AbstractDenseLattice *latticeBeforeCall = before;
visitCallControlFlowTransfer(call, CallControlFlowAction::EnterCallee,
latticeAtCalleeEntry, latticeBeforeCall);
}
void AbstractDenseBackwardDataFlowAnalysis::processOperation(Operation *op) {
// If the containing block is not executable, bail out.
if (!getOrCreateFor<Executable>(op, op->getBlock())->isLive())
return;
// Get the dense lattice to update.
AbstractDenseLattice *before = getLattice(op);
// Get the dense state after execution of this op.
const AbstractDenseLattice *after;
if (Operation *next = op->getNextNode())
after = getLatticeFor(op, next);
else
after = getLatticeFor(op, op->getBlock());
// Special cases where control flow may dictate data flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op))
return visitRegionBranchOperation(op, branch, RegionBranchPoint::parent(),
before);
if (auto call = dyn_cast<CallOpInterface>(op))
return visitCallOperation(call, *after, before);
// Invoke the operation transfer function.
visitOperationImpl(op, *after, before);
}
void AbstractDenseBackwardDataFlowAnalysis::visitBlock(Block *block) {
// If the block is not executable, bail out.
if (!getOrCreateFor<Executable>(block, block)->isLive())
return;
AbstractDenseLattice *before = getLattice(block);
// We need "exit" blocks, i.e. the blocks that may return control to the
// parent operation.
auto isExitBlock = [](Block *b) {
// Treat empty and terminator-less blocks as exit blocks.
if (b->empty() || !b->back().mightHaveTrait<OpTrait::IsTerminator>())
return true;
// There may be a weird case where a terminator may be transferring control
// either to the parent or to another block, so exit blocks and successors
// are not mutually exclusive.
return isa_and_nonnull<RegionBranchTerminatorOpInterface>(
b->getTerminator());
};
if (isExitBlock(block)) {
// If this block is exiting from a callable, the successors of exiting from
// a callable are the successors of all call sites. And the call sites
// themselves are predecessors of the callable.
auto callable = dyn_cast<CallableOpInterface>(block->getParentOp());
if (callable && callable.getCallableRegion() == block->getParent()) {
const auto *callsites = getOrCreateFor<PredecessorState>(block, callable);
// If not all call sites are known, conservative mark all lattices as
// having reached their pessimistic fix points.
if (!callsites->allPredecessorsKnown() ||
!getSolverConfig().isInterprocedural()) {
return setToExitState(before);
}
for (Operation *callsite : callsites->getKnownPredecessors()) {
const AbstractDenseLattice *after;
if (Operation *next = callsite->getNextNode())
after = getLatticeFor(block, next);
else
after = getLatticeFor(block, callsite->getBlock());
visitCallControlFlowTransfer(cast<CallOpInterface>(callsite),
CallControlFlowAction::ExitCallee, *after,
before);
}
return;
}
// If this block is exiting from an operation with region-based control
// flow, propagate the lattice back along the control flow edge.
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp())) {
visitRegionBranchOperation(block, branch, block->getParent(), before);
return;
}
// Cannot reason about successors of an exit block, set the pessimistic
// fixpoint.
return setToExitState(before);
}
// Meet the state with the state before block's successors.
for (Block *successor : block->getSuccessors()) {
if (!getOrCreateFor<Executable>(block,
getProgramPoint<CFGEdge>(block, successor))
->isLive())
continue;
// Merge in the state from the successor: either the first operation, or the
// block itself when empty.
if (successor->empty())
meet(before, *getLatticeFor(block, successor));
else
meet(before, *getLatticeFor(block, &successor->front()));
}
}
void AbstractDenseBackwardDataFlowAnalysis::visitRegionBranchOperation(
ProgramPoint point, RegionBranchOpInterface branch,
RegionBranchPoint branchPoint, AbstractDenseLattice *before) {
// The successors of the operation may be either the first operation of the
// entry block of each possible successor region, or the next operation when
// the branch is a successor of itself.
SmallVector<RegionSuccessor> successors;
branch.getSuccessorRegions(branchPoint, successors);
for (const RegionSuccessor &successor : successors) {
const AbstractDenseLattice *after;
if (successor.isParent() || successor.getSuccessor()->empty()) {
if (Operation *next = branch->getNextNode())
after = getLatticeFor(point, next);
else
after = getLatticeFor(point, branch->getBlock());
} else {
Region *successorRegion = successor.getSuccessor();
assert(!successorRegion->empty() && "unexpected empty successor region");
Block *successorBlock = &successorRegion->front();
if (!getOrCreateFor<Executable>(point, successorBlock)->isLive())
continue;
if (successorBlock->empty())
after = getLatticeFor(point, successorBlock);
else
after = getLatticeFor(point, &successorBlock->front());
}
visitRegionBranchControlFlowTransfer(branch, branchPoint, successor, *after,
before);
}
}
const AbstractDenseLattice *
AbstractDenseBackwardDataFlowAnalysis::getLatticeFor(ProgramPoint dependent,
ProgramPoint point) {
AbstractDenseLattice *state = getLattice(point);
addDependency(state, dependent);
return state;
}